Original Articles

Determination of the most accepted facial angles and anterior-posterior chin position in patients seeking cosmetic surgery in Shiraz, Iran
Reza Mehravan DDS, OMFS, Sara Samadi ... (47-52)

Use of rubber dam among dentists working in the west part of Iran
Ensi Kolyaei DMD, DDS, Masoud Bashiri DMD, DDS, Roya Safari-Faramani MSc, Ebrahim Nasrollahi DMD, DDS, Mohammad Rastegar-Khosravi DMD, DDS (53-57)

Evaluation of teeth whitening with application of novel toothpaste containing ozone
Horigh Moosavi DDS, Lila Vaziri MD, Omid Rajabi PhD, Fateme Rezaee (58-65)

Knowledge of physical education teachers’ toward tooth avulsion in Tehran, Iran
Jafar Parahi MSc, Mohammad Reza Havasian MSc, Mohammad Ali Roozegar DMD, MS (66-71)

A cross-sectional survey on the relationship between some biologic maternal characteristics and dental status of pregnant women in Isfahan, Iran, in 2012
Maryam Allameh DDS, Heidar Khadem DDS, MS, Masoomeh Esfam DDS (72-78)

The detection of salivary glucose, caries and periodontal status in patients with diabetes mellitus
Shahla Kakoei DDS, MSc, Bahareh Hosseini DDS, MSc, Alia Akbar Haghdoot PhD, Mojgan Sanjari MD, Maryam Alsadat Hashemipour DDS, MSc, Ahmad Gholamhosseini PhD (79-84)

A comparative study of the cleaning effect of various ultrasonic cleaners on new, unused endodontic instruments
Masoud Parirokh DMD, MS, Zeynab Kazemizadeh DMD, MS, Arash Shahravan DMD, MS, Ghasem Sahranavard DMD, MS, Ali Akbar Haghdoot MD, PhD .. (85-91)

Clinical characteristics of peripheral ossifying fibroma: A series of 20 cases
Mohammad Reza Zarei DDS, MD, Nader Navabi DDS, MD, Goli Chamani DDS, MD, Sapidah Pour-Monajemzadeh DDS .. (92-97)

http://johoe.kmu.ac.ir
johoe@kmu.ac.ir
Author’s instructions for the Journal of Oral Health & Oral Epidemiology

Journal of Oral Health & Oral Epidemiology is the official journal of the Oral and Dental Diseases Research Center of Kerman University of Medical Sciences. The journal publishes original research articles, review articles, and case reports dealing with oral health and epidemiology. Papers in any of the following fields will be considered for publication: oral health, oral and dental treatment research, oral and dental epidemiology, as well as any issues regarding improvement of oral and dental treatment.

EDITORIAL REVIEW AND ACCEPTANCE

The acceptance criteria for all papers are the quality and originality of the research and its significance to the journal readership. Except for invited papers, submitted manuscripts are peer reviewed by three anonymous reviewers, and the journal’s editorial board. Final acceptance or rejection is depending on the editorial board decision on peer reviewed papers. Manuscripts should be written in a clear, concise and direct style. The Editorial board reserves the right to edit accepted papers to be more concise and free of grammatical typos and errors. Following acceptance an edited form of the paper will be sent to the authors’ correspondence for final review and approval. If extensive alterations are required, the manuscript will be returned to the author for major revision.

SUBMISSION OF MANUSCRIPTS

The *Journal of Oral Health & Oral Epidemiology* is using an online submission and peer review. To submit a manuscript, please open journals website at: http://johoe.kmu.ac.ir

Getting Help with Your Submission

Any enquiries should be sent to:
Mrs. Pouradeli
Editorial Assistant, *Journal of Oral Health & Oral Epidemiology*
Oral and Dental Diseases Research Center, Qusar Boulevard, Kerman, Iran.
Email: johkmu@yahoo.com; johkmu@kmu.ac.ir
Telefax: +98 34 32133440

Cover letter

Papers should be submitted considering the fact that it’s content has not been published or submitted for publication elsewhere except as an abstract in a scientific meeting or congress. This must be stated in the covering letter.

The covering letter must also contain an acknowledgement that all authors have contributed significantly, and that all authors are in agreement with the content of the manuscript. Authors must declare any financial support or relationships with companies and should disclose any conflict of interest at the time of submission. Such information will be held in confidence while the paper is under review and will not affect decision about acceptance or rejection of the paper. If tables or figures from previously published articles have been used in a submit paper a letter from the copyright holder (the Publisher), permitting to reproduce the material, must be attached to the covering letter.
ETHICAL CONSIDERATIONS
If the paper contains any issue regarding human and animals, authors must state that their protocol for the research project has been approved by the Ethics Committee of the institution within which the work was performed. Journal of Oral Health & Oral Epidemiology reserves the right to reject any manuscript at any step on the basis of unethical conduct of either human or animal studies. All investigations on human subjects must include a statement that the subject had been given and signed informed consent. In any case that patient's face photographs need to be printed all efforts should be done to prevent human subjects being recognized (for instances an eye bar should be used).

Abbreviations
At the first appearance in the paper the word should be used in full, followed by the abbreviation in parentheses. After that, use the abbreviation only.

Trade names
Chemical substances and drugs should be referred to by the generic name only. Meanwhile, the name and location of the manufacturer, the city and the country its made by in parentheses should be addressed.

PARTS OF THE MANUSCRIPT
Manuscripts should be presented as following orders: a) title page, b) structural abstract and keywords, c) introduction, d) method and materials, e) results, f) discussion g) conclusion, h) acknowledgements, i) references, j) figures, k) tables (each table complete with title and footnotes).

Title page
The title page should contain a) the title of the paper, b) the full names of the authors, c) the running title, d) the authors’ affiliation and d) the full postal and email address of authors. The running title should be a brief version of the title of the paper, no more than 50 characters long including spaces (5-6 words). The running title needs to both make sense as a phrase and give some idea of what the paper is about.

Abstract and keywords
All articles must have a structural abstract contains a) background and aim, b) methods, c) results, d) conclusion in 300 words or fewer. At least three keywords should be supplied at the end of abstract. MeSH can be used for choosing right keywords.

Main Document
The main document of the manuscript should not exceed than 2000 words except for review and invited articles. The main document should contain: a) introduction, b) method, c) results, d) discussion, and e) conclusion. Case report should contain abstract, introduction, case report, and discussion. Case report should not exceed than 1500 words. All submitted manuscript should be compatible with word 2007 with font size 11 Book Antiqua and single space between main documents lines.

Acknowledgements
The source of financial support and funding must be acknowledged.
References

Journal of Oral Health & Oral Epidemiology has instructed authors to use the Vancouver system of referencing. In the main document, references should be cited with parentheses and in order of their appearance in the text.

The maximum number of references for scientific articles, case reports and clinical updates are 35, 25, and 20, respectively. Review literatures and invited articles have no limit on the number of references. In the reference list, cite the names of all authors when there are six or fewer; when seven or more, list the first six followed by et al. Reference list should contain all references that have been addressed in any part of the manuscript.

Names of journals should be abbreviated in the style used in Index Medicus.

Authors are responsible for the accuracy of the references.

References should be listed in the following form

Journal article

Chapter in a Book

Book

Web pages

Tables
Tables should not duplicate information that have been described in the text. Table legend should be written above it and all tables should be print in separate pages. At the end of manuscript Table legend should be comprehensive and footnotes must be described for each table separately. All abbreviations must be defined in footnotes.

Figures
Illustrations (diagrams and photographs) are classified as figures. The figures should be provided electronically with high resolution (at least 600 d.p.i.) files should be saved as .JEPG or .Tif format. The figures must not be embedded in the word document - they must be uploaded in the separate files. Magnifications of microscopic images should be indicated using a scale bar on the illustration or in the figure legend.
Figure legends should be written on separate pages at the end of the manuscript. Legends should be brief but comprehensive. Explain all abbreviations and the unit of measurements in the figure legend. If table(s) or figure(s) used from previously published documents, authors should send a permission letter from the copyright holder to the editorial office of the JOHOE.

Submission
Authors should submit their manuscripts through online submission system at: http://johoe.kmu.ac.ir or send email to johkmu@yahoo.com.
It is necessary that corresponding authors provide an email address and a mobile phone for communication with the journal authorities.
Table of Contents

Original Articles

Determination of the most accepted facial angles and anterior-posterior chin position in patients seeking cosmetic surgery in Shiraz, Iran
Reza Mehravaran DDS, OMFS, Sara Samadi
(47-52)

Use of rubber dam among dentists working in the west part of Iran
Ensi Kolyaei DMD, DDS, Masoud Bashiri DMD, DDS, Roya Safari-Faramani MSc, Ebrahim Nasrollahi DMD, DDS, Mohammad Rastegar-Khosravi DMD, DDS
(53-57)

Evaluation of teeth whitening with application of novel toothpaste containing ozone
Horieh Moosavi DDS, Lila Vaziri MD, Omid Rajabi PhD, Fatemeh Rezaee
(58-65)

Knowledge of physical education teachers’ toward tooth avulsion in Tehran, Iran
Jafar Panahi MSc, Mohammad Reza Havasian MSc, Mohammad Ali Roozegar DMD, MS
(66-71)

A cross-sectional survey on the relationship between some biologic maternal characteristics and dental status of pregnant women in Isfahan, Iran, in 2012
Maryam Allameh DDS, Heidar Khademi DDS, MS, Masoomeh Eslami DDS
(72-78)

The detection of salivary glucose, caries and periodontal status in patients with diabetes mellitus
Shahla Kakoei DDS, MSc, Bahareh Hosseini DDS, MSc, Ali Akbar Haghdoost PhD, Mojgan Sanjari MD, Maryam Alsadat Hashemipour DDS, MSc, Ahmad Gholamhosseinian PhD
(79-84)

A comparative study of the cleaning effect of various ultrasonic cleaners on new, unused endodontic instruments
Masoud Parirokh DMD, MS, Zeynab Kazemizadeh DMD, MS, Arash Shahrvani DMD, MS, Ghasem Sahranavard DMD, MS, Ali Akbar Haghdoost MD, PhD
(85-91)

Clinical characteristics of peripheral ossifying fibroma: A series of 20 cases
Mohammad Reza Zarei DDS, MD, Nader Navabi DDS, MD, Goli Chamani DDS, MD, Sepideh Pour-Monajemzadeh DDS
(92-97)
Determination of the most accepted facial angles and anterior-posterior chin position in patients seeking cosmetic surgery in Shiraz, Iran

Reza Mehravaran DDS, OMFS¹, Sara Samadi²

Abstract

BACKGROUND AND AIM: Beauty standards are related to race and change over time with cultural changes. The criteria obtained for a specific race cannot be used as treatment planning criteria for other races and societies. It seems that no thorough study has been carried out in Iranian context to determine the acceptability of these standards. In this study, the desired nasolabial (NL), nasofrontal (NF), chin-neck (Ch-N) angles and anterior-posterior chin position from the point of view of people seeking esthetic surgery were determined.

METHODS: In a cross-sectional, descriptive study, 500 people seeking esthetic surgery referring to School of Dentistry and Chamran Hospital in Shiraz, Iran, were asked to see images and record their desired angles in a questionnaire. The samples were chosen from people with ages ranging from 18 to 48 years old referred to the Hospital in 2012 and 2013. The silhouette profile image of a young girl with normal face ratios was used. Data were analyzed via SPSS software using chi-square and t-tests. Chi-square test was used to compare nominal data and student’s t-test to compare quantitative data. P < 0.050 was considered as significant.

RESULTS: The mean age of subjects in our study was 27 years. From the 500 subjects, 35.4% were males and 64.6% were females. Average desired Ch-N, NL and NF were 118.28, 137.8 and 107.8 respectively. Desired mean for the anterior-posterior chin position was 6.23 mm.

CONCLUSION: According to this study, no significant differences were found between the desired face sizes in Iranian community and other communities.

KEYWORDS: Cosmetic Surgery, Beauty Cultures, Beauty

Beauty is an ill-defined concept that is obvious to the observer, however, it is difficult to quantify.¹ Beauty is that “which gives the highest degree of pleasure to the senses or to the mind and suggests that the object of delight approximates one’s conception of an ideal.” Research also demonstrates that the attractiveness contributes to the on-the-job success of men and women and the face of people in the community plays an important role in their acceptability,² small changes in detail, even those produced by such innocuous modalities as cosmetic, can affect changes that are perceived dramatic.³ For instance, the public frequently assumes that the bearer of a severe Class II or severe Class III pattern is a slow, dull individual.⁴ It is true that standards of beauty change over time and across cultures.² From ancient Egypt through the renaissance, western civilization has recorded in sculpture many refined concepts of facial esthetics, common to all these concepts was public recognition of the “the esthetic ideal” of each period.⁴ In the last century, with innovation of safe and
efficient esthetic surgery methods, the people’s interest in these types of surgeries has significantly increased. In the United States, esthetic surgery increased to 529000 cases between 1981 and 1995.5 Statistics shows that Iran is a country with the highest frequency of plastic surgery operations.6 It seems that some factors like cultural background,7 media advertisement8 increased people motivation to undergo cosmetic surgery. Concepts of facial beauty also seem to cross-cultural and racial line and also change over time and cultures.3

There are other studies on the desired face proportions and angles of other races. Iglesias-Linares et al. investigated faces of 80 attractive faces selected by American journals in the last 10 years. They determined the accepted nasofrontal (NF) and nasolabial (NL) angles.9 Yehezkel and Turley measured desired NF and NL angles in the mid- and late-20th century by exploring the attractive figures in fashion magazines in California.10

The criteria obtained for a specific race cannot be used as treatment planning criteria for other races and societies.11 Given the high growth rate of esthetic surgeries in Iran, there is a need for patterns and criteria suitable for the culture and race of this area. The angles and sizes that influence the face and can be changed by esthetic surgery are: NL, NF, Ch-N angle and the anterior-posterior chin position.

It seems that there have been no comprehensive studies on determining the acceptability of these sizes and angles in Iranian society. Therefore, esthetic surgeons usually use the findings of foreign research that have little proportion to traditional and cultural interest in the country to plan treatments. In this study, the desired angles and proportions from the point of view of people seeking esthetic surgery were determined.

Methods

In this cross-sectional, descriptive study, 500 people seeking esthetic surgery referred to School of Dentistry and Chamran Hospital in Shiraz, Iran, were asked to see images and record their desired Ch-N, NF, NL angles, and the anterior-posterior chin position in a questionnaire. The samples were chosen from people with ages ranging from 18 to 48 years old referred to the Hospital in 2012 and 2013.

The colored digital image of the profile was obtained using a Samsung smart camera (WB-500). The profile image was obtained in a standard sized procedure by positioning the subject 5 feet from the camera with the head in the natural head posture and lip at rest.

To prepare the image used for the purpose of this study, the silhouette profile image of a young girl with normal face ratios was used. Angles and sizes measured in this study were as the following:

NL angle: The angle between two lines tangent on columella and the upper lip mucocutaneous junction from subnasal point.12

NF angle: The angle between the two tangent lines on the forehead and the dorsum of the nose from radix point.13 N-Ch angle: The angle between two lines tangent on submental and neck areas.14

Anterior-posterior chin position: This is measured based on the distance of the most prominent anterior point of the chin (POG) soft tissue from the line that is perpendicular to the horizon from the subnasale point.12 In these images, each of the NF, N-Ch, NL angles, and the anterior-posterior chin position were changed separately with equal amounts relative to the standard amount by Adobe Photoshop_cs6 (Figures 1-4). In each image, an angle was changed, and the rest of the angles and proportions were kept constant.

Images were classified in separate categories and hence that in each group an angle or size was changed. Each image was marked with a code, and the subjects were asked to select the desired image in each category and record it in his questionnaire. As the images belonged to a female, the result can be considered only in relation to female patients.
The results of the questionnaire were classified and the number of votes obtained for each image was determined. Data were analyzed by SPSS software (version 18, SPSS Inc., Chicago, IL, USA) using chi-square and t-test. Chi-Square test was used to compare nominal data and student’s t-test to compare quantitative data. P < 0.050 was considered as significant.

Results

The mean age of the subjects in our study was 27 years. Of the 500 subjects, 35.4% were males and 64.6% were females. Regarding N-Ch angle, the most desired angle was 120° (P < 0.001) following by 130°. It appears that
older people were more likely to choose more acute angles than younger people (P = 0.028) (Table 1).

In general, the average desired angle for this measure was 118.28°. The most desired NF angle from the subjects’ point of view was 135° followed by 145° (P = 0.056). There was no relationship between age and sex of voters with their selected angles. The mean value for this angle was 137.8° (Table 2).

The studied patients chose 120° as their most desired NL angle followed by 110° (P < 0.001). Most female voters chose 120° and most male voters chose 110°. The overall mean value for this angle was 107.8°. Regarding anterior-posterior chin position determined by measuring the distance from POG to subnasal perpendicular line, the most desired value was 9 mm followed by 6 mm (P < 0.001). The average desired anterior-posterior chin position was 6.23 mm (Table 2).

Overall, no significant differences between the subjects’ sex and NL, NF and N-Ch angles and anterior-posterior chin position were found. Furthermore, there were no significant differences between age and NL, NF angles and anterior posterior chin position.

Discussion

In our study, we have tried to investigate a number of face angles and sizes in sagittal plan and to determine the ideal amounts from Iranians’ point of view. It seems that every society’s ideals of beauty change over time. In contrast, the concept of attractiveness is different from one ethnicity to the other. Therefore, the need for updating esthetic surgery guidelines in each society seems essential.

In our study, the ideal sizes and angles were determined through a questionnaire accompanied by a series of face photographs. The procedure had been used in many other studies as well. However, to omit the influence of makeup, hairstyle and skin color on the voters’ judgment, we prepared dark silhouette pictures. A number of other studies had used photographs of movie, TV and fashion stars to determine desired sizes, although the problem with this method is the impact of the celebrity’s popularity on the judgment of voters.

In our study, the image of a woman was used to determine ideal sizes. The reason was the women’s highest request for esthetic surgery in our community compared to men’s. It seemed that this was also true in other communities. In this study, the average N-Ch angle was 118° which was almost concurred with the standard value.

Table 1. Frequency and percentage of neck-chin angle

<table>
<thead>
<tr>
<th>Neck-chin angle</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34-48</td>
<td>34-48</td>
<td>18-33</td>
<td>34-48</td>
<td>18-33</td>
</tr>
<tr>
<td>11</td>
<td>42</td>
<td>7</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>27</td>
<td>35</td>
<td>29</td>
</tr>
</tbody>
</table>

Table 2. Frequency and percentage of NF and NL angles and anterior-posterior chin position

<table>
<thead>
<tr>
<th>NF angle</th>
<th>Percentage</th>
<th>Degree</th>
<th>Degree</th>
<th>Frequency</th>
<th>Percentage</th>
<th>Degree</th>
<th>Degree</th>
<th>Frequency</th>
<th>Percentage</th>
<th>Anterior-posterior chin position</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>14.8</td>
<td>80</td>
<td>40</td>
<td>8.0</td>
<td>-6</td>
<td>5</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>14.4</td>
<td>90</td>
<td>76</td>
<td>15.2</td>
<td>-3</td>
<td>7</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>101</td>
<td>100</td>
<td>99</td>
<td>19.8</td>
<td>0</td>
<td>12</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>15.2</td>
<td>110</td>
<td>100</td>
<td>20.0</td>
<td>+3</td>
<td>99</td>
<td>19.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>100</td>
<td>120</td>
<td>109</td>
<td>21.8</td>
<td>+6</td>
<td>174</td>
<td>34.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>15.4</td>
<td>130</td>
<td>76</td>
<td>15.2</td>
<td>+9</td>
<td>203</td>
<td>40.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NF: Nasofrontal; NL: Nasolabial
Regarding the NF angle, our study determined the desired average angle of approximately 138°. This was consistent with the results of Berneburg et al.,23 However, the most popular NF angle for Iranians was 130°.24 In our study, the ideal NL angle was approximately 108°, which was expected because the normal size of this angle is 90-110 in women.12 However, this result was a little more than the most common angle among the Iranian race which is 98°.24 In the contrary to our study, people had been interested in more acute NL in similar studies conducted before.10,25,26 A logical justification could be the tendency of people towards more protrude lips. In these studies, the more protrusion of the upper lip, the smaller the NL angle. However, in our study, despite a slight change in the shape of lips this did not occur.

The anterior-posterior chin position in our study was set back a little more than normal, which is consistent with Sforza et al.,27 and Yehezkel and Turley study.10 However, study of Abu Arqoub and Al-Khateeb found results not consistent with ours.17 In the study of Turkkahraman and Gokalp,18 men voted to convex profile more than women. Women voted to women with a concave profile. However, in our study there was no difference in the male and female votes.

Conclusion

Generally, according to the findings of this study, there were no significant differences between the desired face sizes in Iranian community and other communities. In some other studies, there had been no difference between the ideal face sizes in several races.6,10 This might be due to the same effect of ubiquitous media on different ethnic groups and strict patterns of beauty through the world.

Conflict of Interests

Authors have no conflict of interest.

Acknowledgments

This paper has been extracted from Sara Samadi’s DDS thesis, which was conducted under supervision of Dr. Mehravaran. This study was approved, registered with ID 8592039, and supported by the International Branch of Shiraz University of Medical sciences. The authors would like to thank Sarah Roosta at center for Development of Clinical Studies of Nemazee Hospital for statistical assistance.

References

Use of rubber dam among dentists working in the west part of Iran

Ensi Kolyaei DMD, DDS¹, Masoud Bashiri DMD, DDS¹, Roya Safari-Faramani MSc², Ebrahim Nasrollahi DMD, DDS³, Mohammad Rastegar-Khosravi DMD, DDS⁴

Abstract

BACKGROUND AND AIM: Although Rubber dam (RD) usage is one of the ideal and standard methods for isolating the teeth in several operative procedures of dentistry, General Dental Practitioners often neglect it. Many studies within several countries have reported various frequencies for RD application. There is no such study for Iran, so we conducted a study to report the frequency of its application and the effective factors.

METHODS: This cross-sectional study carried out across the west part of Iran in 2013. A total of 525 general Dental Practitioners from the public and private sectors selected by stratified random sampling using a list from 3 big western cities of Iran. The data were collected using self-administered checklist.

RESULTS: The prevalence of RD application among General Dental Practitioner was 0.2% (confidence interval 95%: 0.196-0.204). RD instrument was existed in around 7.0% of cases. The main reason of the General Dental Practitioner to avoid RD application was supposing it is time-consuming procedure and causing patients stress (58.9%).

CONCLUSION: Despite the advantages of RD application, its usage is not recognized as a routine and common method of isolation during dental procedures even roots canal therapy by Iranian General Dental Practitioners.

KEYWORDS: Rubber Dam, Isolation, Endodontic Treatment, General Dental Practitioner

Since the rubber dam (RD) introduction by Barnum in 1864, its application has improved operative General Dental Practitioner in many ways for more than 145 years. A drier field, better visibility and access, increased patient comfort, and infection control, prevention of aspiration instruments and ingestion of irrigation material and retraction of soft tissue are only a few of the many advantages of using a RD.¹ ²

Although General Dental Practitioners are taught in school that RD isolate selected teeth and safeguard the rest of the patient’s mouth during treatment, most of fresh General Dental Practitioners falsely assume that RD are only training tools used for academic purposes at school.³

RD usage is considered as one of the ideal and standard method for isolating the working area in root channel treatment, adhesive procedures and operative procedures.⁴ General Dental Practitioners often avoid use of RD, supposing that it would stress the patient and its application is time consuming but in fact Isolation with RD cause less stress in children and adolescents comparing to relative isolation with cotton rolls if applied by an experienced General Dental Practitioner and also it can save

1- Student of Dentistry, Department of Endodontic, School of Dentistry, Kurdistan University of Medical Sciences, Sanandaj, Iran
2- PhD Student, Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
3- Assistant Professor, Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
4- Assistant Professor, Department of Endodontics, School of Dentistry, Kurdistan University of Medical Sciences, Sanandaj, Iran

Correspondence to: Ensi Kolyaei DMD, DDS
Email: nc.kolyaei@gmail.com
valuable treatment time. Many studies have been done to evaluate the frequency of RD usage within several countries and showed various frequencies for RD application. We could not find any related research about usage of RD by Iranian dentists.

The aim of this study is designed to evaluate the frequency of RD application by the General Dental Practitioners working in three big cities located in the west part of Iran and find out the main reasons why General Dental Practitioners apply it or not.

Methods

The Kermanshah, Iran, Institutional Review Board approval for the publication of the curriculum and the post-simulation experience survey results was obtained for this study. This was a cross-sectional study carried out across the west part of Iran in 2013. Kermanshah, Kurdistan and Ilam in Iran were selected. A study conducted in the corresponding capital cities, Kermanshah, Sanandaj and Ilam.

Five hundred and twenty-five General Dental Practitioners from the public and private sectors selected by stratified random sampling using a list. We consider city as strata. Most of the cases were selected from Kermanshah (308) then Sanandaj (141) and 80 cases were selected in Ilam. Total numbers of General Dental Practitioners in these cities are as follows: 426 General Dental Practitioners in Kermanshah, 206 in Sanandaj and 113 in Ilam. We sampled 70% of them, on average. We excluded specialists, and only General Dental Practitioners were included.

We defined the socioeconomic status of the area based on the opinion of the local people. Three main categories were affluent areas, middle and disadvantage areas. The data were collected by using self-administrated checklist that included demographic information and items about the RD application. Data on frequency of RD usage and the associated reason for use or not, experience of aspiration the materials by the client, availability of the instruments requires for management of aspiration in the office, their knowledge in managing the unlike aspiration case were collected.

Results

Five hundred and eighteen General Dental Practitioners entered in the study (response rate: 98.7%). Mean age was 39.91 (standard deviation: 6.21) and 63.3% were male. More than 60.0% were graduated from the public universities across Iran. Around 42.0% of the General Dental Practitioners were working for 5-10 years. About 61.8% of respondents worked in affluent areas, and only 17.4% were in low economic area. The basic characteristics of the study population are presented in table 1.

Table 1. Basic characteristics of the dentists participating in the study

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>328 (63.3)</td>
</tr>
<tr>
<td>Female</td>
<td>190 (36.7)</td>
</tr>
<tr>
<td>University</td>
<td></td>
</tr>
<tr>
<td>Public</td>
<td>313 (60.4)</td>
</tr>
<tr>
<td>Azad</td>
<td>99 (19.1)</td>
</tr>
<tr>
<td>Foreign</td>
<td>106 (20.5)</td>
</tr>
<tr>
<td>Location of clinic</td>
<td></td>
</tr>
<tr>
<td>Affluent</td>
<td>320 (61.8)</td>
</tr>
<tr>
<td>Middle</td>
<td>108 (20.8)</td>
</tr>
<tr>
<td>Disadvantage</td>
<td>90 (17.4)</td>
</tr>
<tr>
<td>Carrier length (year)</td>
<td></td>
</tr>
<tr>
<td>5 or less</td>
<td>131 (25.3)</td>
</tr>
<tr>
<td>5-10</td>
<td>216 (41.7)</td>
</tr>
<tr>
<td>10 or more</td>
<td>171 (33.0)</td>
</tr>
</tbody>
</table>

All the study population reported that they had been taught about RD in the University; however, only one of them was a regular RD user in the case of composite and amalgam restoration. The prevalence of RD application among General Dental Practitioner was 0.2% (confidence interval 95%: 0.196-0.204). The solo General Dental Practitioner, who applies RD, was a 45 aged with more than 10 years working experience. RD instrument was existed in around 7% of
cases. The main reason of the General Dental Practitioner to avoid RD application was supposing it is time-consuming procedure and causing patients stress (58.9%).

More than 90% of the General Dental Practitioners did not report any case of aspiration. Although, all the General Dental Practitioners were taught on the management of the emergency cases more than 10.0% of them had none of the requiring equipment. Emergency drugs were the only available equipment for the management of emergency cases (Table 2).

Discussion

Our study showed that only 1 (0.2%) out of 518 General Dental Practitioners participated in survey applies RD during dental procedures and 99.8% have never used RD, which is higher than all studies done before such as the one done in USA, Nigeria, United Kingdom, Saudi Arabia, Cameroun, New Zealand, Czech and Denmark whereas our sample size was bigger than the ones in Cameroun-33, Nigeria-100 and Czech-450.

All respondents reported being taught to apply RD during undergraduate period in both types of dental colleges (Public, Azad Universities) and even the ones graduated from universities in foreign countries, but in study by Kapitan and Sustova only 32 of respondents received RD application training.

The percentage of regular RD users (0.2%) indicates that almost all General Dental Practitioners disregard using RD due to different reasons, which is similar with the result of the study by Mala et al. who showed that 26.0% of students reported that

Table 2. Data on RD application among dentists

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Being taught at the university</td>
<td>518 (100)</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Existing RD instrument in the office</td>
<td>34 (6.6)</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>484 (93.4)</td>
</tr>
<tr>
<td>Use of RD</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>No</td>
<td>517 (99.8)</td>
</tr>
<tr>
<td>Reasons for not using</td>
<td></td>
</tr>
<tr>
<td>Patients stress and uncomforting</td>
<td>62 (12.0)</td>
</tr>
<tr>
<td>Time consuming</td>
<td>147 (28.5)</td>
</tr>
<tr>
<td>Patients stress and uncomforting and time consuming</td>
<td>304 (58.9)</td>
</tr>
<tr>
<td>Other reasons</td>
<td>3 (0.6)</td>
</tr>
<tr>
<td>Aspiration occurrence</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>41 (7.9)</td>
</tr>
<tr>
<td>No</td>
<td>477 (92.1)</td>
</tr>
<tr>
<td>Being taught for the management of the aspiration case</td>
<td>518 (100)</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Existing equipments in the case of emergency</td>
<td>458 (88.4)</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>60 (11.6)</td>
</tr>
<tr>
<td>Type of equipments in the case of emergency</td>
<td></td>
</tr>
<tr>
<td>Just laryngoscope</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Just emergency drugs</td>
<td>445 (97.4)</td>
</tr>
<tr>
<td>Either laryngoscope and emergency drugs</td>
<td>12 (2.6)</td>
</tr>
</tbody>
</table>

RD: Rubber dam
their RD usage would have decreased when starting their private practice.

An inverse association between working experience and application of RD is stated by Kapitan and Sustova15 and Peciuliene et al.,17 however Jenkins et al.,18 found a positive association. In this study as the cases that uses the RD was so rare, despite a relatively large sample size this result in the lack of statistical power to study the associated factors. National studies to evaluate factors influencing General Dental Practitioners to apply RD are recommended.

The most common reasons for avoiding RD placement by our respondents were being time consuming the RD placement and stressing the patient, which are accordance with studies done by Ahmad19 and Filipović et al.,20 this finding is due to overestimating time by General Dental Practitioner while if aspiration occurs they would need more and more time to stable the situation and save their patient.

Conclusion

Considering the effect of RD application on the dental procedures such as better visibility, providing a drier field, increasing patient comfort and preventing infection it is necessary to emphasis more on its application.1,2 Despite these advantages RD application is not recognized as a routine, and common method of isolation during dental procedures even root canal therapy by Iranian General Dental Practitioners. Their main reason is time-consuming and patient discomfort. It is needed to re-educate them and provide an opportunity to modify their attitude when they finished their course in the university.

Conflict of Interests

Authors have no conflict of interest.

Acknowledgments

We gratefully acknowledge the cooperation and helpful input from Dr. Firouzi, Head of Kurdestan Dentistry College and Mehrdad Ghoresishi for his assistant in collecting data, without which the present study could not have been completed.

References

Evaluation of teeth whitening with application of novel toothpaste containing ozone

Horieh Moosavi DDS¹, Lila Vaziri MD², Omid Rajabi PhD³, Fatemeh Rezaee⁴

Abstract

BACKGROUND AND AIM: The aim of this study was to evaluate the effectiveness of different whitening toothpastes, focusing on the experimental ozonated toothpaste.

METHODS: This laboratory study included a sample of 48 sound human molar teeth. Teeth were randomly assigned into four groups according to toothpaste treatment to be evaluated objectively (colorimetric method) and subjectively (visual assessment) (n = 12). Group I: Ozonated toothpaste (experimental); Group II: Non-ozonated toothpaste (experimental); Group III: Aqua fresh whitening triple protection; and Group IV: Nasim (toothpaste without a chemical whitening agent). After tea staining and color assessment, the teeth were subjected to a tooth brushing regime as for 6 weeks, done twice a day, 2 min each time (total: 168 min). Next, color changes were determined after brushing by instrumental and visual methods.

RESULTS: Analysis of variance and the Tukey tests were used for evaluating statistical data (α = 0.05). Color change by instrumental index showed that ozonated and aquafresh toothpastes increased teeth whitening; however, the amount color change was not significant (P > 0.050). With visual assessment there was a significant difference between mean color change among the four groups (P = 0.008).

CONCLUSION: Ozonated toothpaste caused significant whitening changes in discolorated teeth from a clinical point of view by visual assessment.

KEYWORDS: Ozone, Toothpaste, Whitening

People have a strong desire to have white teeth and many patients are dissatisfied with their current tooth color as indicated in a number of recent studies.¹ As a result, nowadays, clinical professional treatments are available to patients in conjunction with daily oral hygiene tools such as various toothpastes meant to remove certain types of dental discoloration. These toothpastes contain chemical or abrasive whitening compounds. There are many methods to improve tooth color, namely tooth bleaching or the removal and control of extrinsic stain and placement of esthetic restorations.² The introduction of different formulations of peroxide and their product variety, such as gels, rinses, gums, mouthwash, strips, and coloring agents, are available over the counter in pharmacies, as well as being conveniently available from the internet. They are alternative solutions for at-home dental whitening.³ Tooth color is dependent on the color of dentin and on internal and external absorbed stains.⁴,⁵ Any change in the structure of enamel, dentin and pulp of a...
tooth crown can cause changes in the way light passes through the tooth and hence, result in tooth color changes.6

It is very important to determine the essential etiology of tooth discoloration for conducting a successful treatment. Changes in tooth color can be divided into two main groups of internal and external or a combination of both.4 The most common reason of external color changes are dark foods, usage of some medications, tobacco use, certain types of bacteria in oral flora and the presence of pits, fissures, cracks or defects in the enamel.7,8 Some extrinsic stains that remain on the tooth for a long time become intrinsic. The removal and control of extrinsic stain is possible with toothpaste and in particular, tooth whitening formulations, which typically contain optimized chemical and abrasive ingredients to maximize cleaning.9 The whitening effects of chemical ingredients can be observed quickly after 4-7 days, whereas abrasive agents show their influence over a longer period (2-4 weeks).10

Scientific support, as suggested by demonstrated studies, for ozone therapy presents a potential for an a traumatic, biologically-based treatment for conditions encountered in dental practice and that ozone can be successfully used for lightening the yellowish tinge of tetracycline-stained rat incisors.11,12 Hence in this study, special ozonated toothpaste was used in order to whitening teeth. The evaluation of whitening toothpaste on tooth color changes can be measured with a colorimeter, spectrophotometer or by comparison with a vita shade guide under controlled lighting conditions.9 According to the best of the authors’ knowledge, no one employed in trial an ozonated toothpaste as a teeth whitening agent. The aim of this study was to evaluate the effectiveness of different types of toothpaste products in teeth whitening, with a focus on the experimental ozonated toothpaste by the colorimetric and visual methods.

Methods

This laboratory study was conducted on 48 recently extracted sound human molar teeth under a protocol approved by the Ethics Committee of the Mashhad School of Dentistry, Mashhad University of Medical Sciences, Iran (87892/2009). Formalin solution 10% was used to disinfect the teeth. First, an ultrasonic cleaner and then rubber cup with the prophylaxis paste by low speed handpiece were used for 2 min to remove debris and stains on teeth crown surfaces. Next, all teeth were examined for any cracks and decay due to restorations, crown color change and other possible defects. Then, the roots were cut by a disc from the cemento-enamel junction and good quality clear nail polish was used to seal the crown bottoms and then were mounted in immediate self-cured acrylic (Akro Pars, Iran).

Each sample was mounted in the center of a cylinder and labial surfaces of all teeth were placed toward the outside with about 1 mm of the labial surface remaining out of the acrylic. These cylinders were selected based on the holes’ diameter of the artificial tooth brush device so as to be able to place the mounted samples in the holes. Each tooth was immersed separately in cans containing standardized black tea bag (Golestan, Iran Co) solution for 2 weeks using the method described by Sulieman et al.13

The tea solution was prepared by boiling 2 g of black tea with 100 ml of distilled water for 5 min and then filtered to remove the tea leaves from the infusion. In order to simulate the oral environment, the samples were kept inside an incubator at 37 °C while being immersed in tea solution. During this time, the tea solution was changed daily. After tea staining, since the purposed was to evaluate tooth whitening in where the toothpaste has been designed to have an effect on the average intrinsic tooth paste color, the teeth were thoroughly polished to remove any traces of surface extrinsic stain. This was then followed by a brushing protocol with the
tested toothpastes.

Teeth were randomly divided into four groups of 12 teeth each as follows: Group I: Ozonated toothpaste (experimental; the peroxide concentration was equivalent to 25-50 mmol/g of H$_2$O$_2$), Group II: Non-ozonated toothpaste (control), Group III: Aqua fresh whitening triple protection toothpaste, Group IV: Nasim (toothpaste without any chemical whitening agent). Tooth brushing was done by an electric device (Nemo, Mashhad, Iran). Teeth color measurements were conducted in two stages; first, after tooth staining (Stage T1), and immediately after tooth brushing (Stage T2) with different types of toothpastes. The shade of each tooth was measured by the colorimetric method and visual assessment.

Objective color assessment of samples was done by the colorimeter color eye (XTH, X-rite, Grand Rapids, MI, USA). The surface of each tooth was covered with an acid-resistant nail varnish, leaving a window of approximately 4 mm × 4 mm at the center of the buccal surface exposed. This device was used under the same light conditions and the evaluator held the same position during the two stages for all of the teeth. The samples were completely dried by cotton before colorimetric assessment.

In this study, the standard light source was D65 and the whiteness index was E313. The device was calibrated by the device's enclosed white pill before conducting the color assessment and then the desired sample was placed under the diaphragm at the light source. All the color changes between the two-stages of color assessment were recorded as L* (lightness), a* (redness), and b* (yellowness) axes based on the CIE Lab (Commission International de l'Eclairage) system. An L* value indicates the lightness of tooth samples and the range is from 0 = black to 100 = white, whereas a*, and b* values indicate positions on red/green (+a = red, -a = green) and yellow/blue (+b = yellow, -b = blue) axes, respectively. Total color difference (ΔE) was calculated by the following formula:

$$\Delta E^2 = \Delta a^2 + \Delta b^2 + \Delta L^2$$

Standard vita shade guide (Vita, Zahnfabrik, Germany) tabs that were arranged from B1 to C4, corresponding to a grade of whitening from 1 to 16 was used. Although this scale is not linear in the truest sense, the changes were treated as though they represented a continuous and approximately linear ranking for the purpose of analysis. A trained evaluator conducted the visual evaluation and repeated measurements consequently 2 times for each tooth in middle of sunny days (10 am). Initially, the teeth were placed on a dark background to simulate the dark oral environment. Next, color assessment was performed under a uniform and constant light environment in the laboratory for all samples that were done in two-stages. Vita color differences were calculated by the following formula:

$$\Delta \text{Vita shade change} = \text{Vita score (treatment)} - \text{Vita score (baseline)}$$

The ozone used in this study was produced in the pharmacology research laboratory by an American made ozone-generating machine with the ability to produce 13 g of ozone per hour. Due to the unstable properties of ozone, ozone gas was blown into an olive oil tank by a pipe at a speed of 13 g/h to make ozonated olive oil. Then, the olive oil was converted into a gel with full oxidization properties after 48 h periods to be used as toothpaste in group I of this study.

The pH 8.5 of ozonated olive oil was obtained by adding 1 m sodium hydroxide solution and then sodium lauryl sulfate was added to reach a 0.1% concentration. The tooth brushing regimens were performed equally for 6 weeks, twice a day and each time for 2 min. For the artificial brush system, the total period of brushing was equivalent to 168 min. Equal amounts of toothpaste were used for all samples after
every 2 min, fresh toothpaste was placed on the surface of the teeth and the surfaces were kept moist during brushing. When the samples were not in use, they were stored in water and away from light. Immediately after brushing with the four toothpastes, the sample colors were evaluated by colorimetric and visual assessments and data was recorded. One-way analysis of variance (ANOVA) and Tukey tests were used to analysis the color data that were obtained by colorimeter and visual assessments. Significant levels were considered to be $\alpha = 0.05$.

Results

In colorimetric assessment, from one stage to the next, the mean L^* value showed a significant increase (Figure 1).

From Stage I to II the mean a^* value decreased in all groups, except for the non-ozonated toothpaste group; however, this reduction was significant only in the aquafresh group (Figure 2).

In all groups, except for the non-ozonated toothpaste group, from Stage I to II the mean b^* value decreased and this value was significant in the ozonated and aquafresh dentifrice groups (Figure 3).
Among the four groups that were assessed by the colorimetric method, comparison was done between the color difference (ΔE) using the ANOVA test. Minimum color differences or color change was obvious in Group IV and between Stages I and II. The amount of color change among the two stages of color assessment among the experimental groups was not significant (Table 1).

The test result showed that there was a significant difference between the ranking of mean color change done by visual assessment among the four types of toothpastes (P = 0.008). Tukey post-hoc test indicated that there was a significant difference between Groups I and III and with other groups regarding color changes by visual assessment (Table 2).

Discussion

Various bleaching agents have been introduced to whiten teeth, such as urea, nitric acid (or aqua fortis), chlorine, pyrozone, svpraksvl, hydrogen peroxide, ether, sodium perborate, carbamide peroxide, gly-oxide, proxigel, potassium cyanide, oxalic acid, ammonium, sodium peroxide, hydrogen dioxide and blue covarine. In addition, toothpastes containing carbamide peroxide 10% have also entered the market.

Table 1. Comparison of mean color change with colorimetric assessment for the experimental toothpastes

<table>
<thead>
<tr>
<th>Color change between 2 times</th>
<th>Experimental groups</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE I, II</td>
<td>Ozonated T</td>
<td>12</td>
<td>7.64</td>
<td>2.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-ozonated T</td>
<td>12</td>
<td>6.41</td>
<td>3.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aquafresh T</td>
<td>12</td>
<td>7.81</td>
<td>4.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nasim T</td>
<td>12</td>
<td>4.57</td>
<td>2.60</td>
<td></td>
</tr>
</tbody>
</table>

SD: Standard deviation

Table 2. Comparison of mean color change with the vita shade guide assessment for the experimental toothpastes

<table>
<thead>
<tr>
<th>Color change between 2 times</th>
<th>Experimental groups</th>
<th>N</th>
<th>Mean ΔVita (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔVita I, II</td>
<td>Ozonated T</td>
<td>12</td>
<td>-12.25 (1.48)a</td>
</tr>
<tr>
<td></td>
<td>Non-ozonated T</td>
<td>12</td>
<td>-0.92 (1.78)b</td>
</tr>
<tr>
<td></td>
<td>Aquafresh T</td>
<td>12</td>
<td>-5.00 (2.34)c</td>
</tr>
<tr>
<td></td>
<td>Nasim T</td>
<td>12</td>
<td>-1.50 (1.16)b</td>
</tr>
</tbody>
</table>

Values with the same superscript letters are not statistically different; SD: Standard deviation
At present, the use of ozone in dentistry has been recommended for the sterilization of dental cavities, carious lesions, root canals, periodontal pouches and herpetic lesions.11,21 Medical grade ozone is a mixture of pure ozone and pure oxygen with the ratio of 0.05-5% ozone and 95.0-99.5% oxygen. Since ozone molecules are instable, ozone should be used immediately after being prepared. After preparation, half of the mixture begins to transform into ozone after an hour, whereas the other half becomes oxygen; therefore, making it impossible to store ozone for a long time. In order to control the breakdown of ozone to oxygen, a medium with aqueous properties to promote quick conversion or a medium with more viscous properties to retard conversion can be used.21-23

The ozone used in this study was produced in Mashhad Pharmacology Research Laboratory by use of an American made ozone-generating machine with the ability to produce 13.5 g of ozone per hour. The ozone gas was blown into the olive oil tank by a pipe and with the speed of 13 g/h. The olive oil was converted to gel with completely oxidized properties after 48 h period. Ozonated olive oil with a pH of 8.5 was obtained by mixing with 1 m sodium hydroxide solution and then adding sodium lauryl sulfate to reach a 0.1% concentration. In this study, the ozone gas was used as a special gel for teeth whitening and its quality was compared with other toothpastes with have different components.

The evaluation impact of these materials to improve color was conducted by the colorimetric test and the measurement of sample colors were conducted based on the Lab coloring system and eye criteria or by ranking. In lab system, the color profile of the object is to be determined in three axis of value, hue and chroma; L* (lightness), a* (red-green) and b* (yellow-blue) respectively. To determine the color difference, the values listed can be calculated between two objects or two various phases and is shown by ∆E criteria.24,25

In the current study, the color of teeth was determined for group classification and baseline color after staining with tea and the next step was to use the different toothpastes to compare their effects on whitening. In examining the color parameters of this study, the mean L* value increased significantly from baseline to after brushing, hence whiter teeth. Furthermore, a decrease in a* value is a sign of whitened teeth. The value of a* decreased in all toothpastes with the exception of non-ozonated toothpastes.

The a* value reduction was significant in Aquafresh toothpaste and more noticeable in ozonated toothpaste groups. Regarding b* value, a decrease in b* value is also a sign of whitened teeth and this was observed in all toothpastes, except for the non-ozonated toothpaste. Obviously, the reduction of a* and b* values were related to the presence of whitening compounds of the ozonated and Aquafresh brand toothpastes just as in the bleaching agents.

In comparing the effect of using different toothpastes and the difference results, the changes of a* value was < b* and L*values, which was probably related to the properties of color staining material of the tea. Based on the L* a* b* color difference system, it is clinically important for the amount of ∆E = 3.3, because this allows color change to be detectable by any observer. In evaluating the color changes in different times by the colorimetric method, ∆E was determined. We had the maximum mean color change in Aquafresh and ozonated toothpastes. All color changes were clinically visible and were above 3.3; however, these values were not statistically significant.

Thus, half of the null hypothesis of this study was accepted. In determining teeth color ranking by eye, the most mean color ranking changes were in the ozonated toothpaste and the least was in the non-ozonated one. There was a significant difference between mean color changes visually evaluated in the four types of
toothpaste. Therefore, the second half of the null hypothesis was rejected. It was determined that there was a significant difference between the color ranking changes between ozonated and aquafresh with other toothpastes. The average teeth color ranking change was brighter (12 and 5 score respectively) with the ozonated and aquafresh toothpastes; while, the amount of color lightening in the non-ozonated toothpaste and Nasim brand had almost the same color ranking; about one score. Similar to other studies that used the colorimetric and visual assessment methods, both methods showed visible clinical changes and the obtained data by both methods mostly confirmed each other. However, visual assessment is not as accurate as the colorimetric method.24,25

Therefore, ozonated and aquafresh toothpastes caused tooth whitening after 6 weeks of brushing. Based on the obtain results, the role of ozone in the composition of the new toothpaste for bleaching of discoloration with a formulated ozone concentration were confirmed in this study. Ozone, such as the other dental bleaching materials that have already been introduced, is able to assist in removing tooth discoloration probably with the help of its oxidizing agent. Furthermore, the whitening role of ozonated toothpaste cannot be strictly attributed to surface wearing because in the non-ozonated toothpaste group the composition and the application regime was quite similar to ozonated toothpaste. Hence, the ozone whitening role in this study was confirmed as in similar previous studies.12,25

Considering the mentioned beneficial effects for ozone,11,26-29 it is recommended that in future studies the impact of the new ozonated toothpaste on other types of discolorations, other substrates and tooth-colored materials, persistence of its whitening effect, and changes on enamel microstructure in terms of tooth hardness level, wear and mineral content level be investigated. Also, by conducting a clinical trial, the long-term application of ozonated toothpaste, its biological effects and possible complications should be identified and resolved.

Conclusion

With the limitations of the study, it can be concluded that: The added benefit of ozone in toothpaste is that it has a bleaching effect on the teeth, and has some great results. Ozonated toothpaste caused significant whitening changes in discolored teeth in comparison to without ozonated toothpaste.

Conflict of Interests

Authors have no conflict of interest.

Acknowledgments

The authors express their thanks to the research chancellor of the Mashhad University of Medical Sciences for providing this research with financial support (grant number 87892). The results described in this paper have been taken from a DDS student thesis (No. 2290).

References

Knowledge of physical education teachers’ toward tooth avulsion in Tehran, Iran

Jafar Panahi MSc¹, Mohammad Reza Havasian MSc¹, Mohammad Ali Roozegar DMD, MS²

Abstract

BACKGROUND AND AIM: Teeth are always faced with different traumas and all those traumas, which cause teeth to exit their sockets, are classified as avulsion. Avulsion most commonly occurs in 7-11 year olds. If sports tutors have enough information regarding replantation, they could play a significant role in prognosis of treatment. The purpose of this study was to assess physical education teachers’ level of knowledge regarding avulsion of teeth in Tehran’s Primary Schools, Iran, in 2012.

METHODS: This was a cross-sectional study which used a questionnaire consisting three parts including 21 questions. The first part was about demographic information; the second part was about traumatic lesion to tooth and the third part was about process of avulsed teeth protection. The questionnaire was completed by a random sample of volunteer sports tutors in Tehran Primary Schools. Collected data were analyzed using the SPSS software using the chi-square test.

RESULTS: About 160 subjects participated, 67.1% of the tutors had mid-level knowledge regarding the second part of the questionnaire, and 64.1% had a low level of knowledge regarding the third part. In relation to the second and third part of the questionnaire, a statistically significant relationship was observed between the age of the tutors and their level of information (P < 0.050). There was also a significant relationship between the level of information about the third section of the survey and the amount of experience the tutors had about avulsion (P < 0.050).

CONCLUSION: The results indicate a low level of knowledge in sports tutors in dealing with avulsed teeth and suitable media for transferring the teeth. Suitable educational programs for these tutors could be very useful in enhancing their knowledge and pertaining traumatized teeth.

KEYWORDS: Dental Trauma, Knowledge, Physical Education Teachers, Iran

All traumatic experiences which lead to the separation of a tooth from the alveolar socket are defined as avulsion¹ that often occurs in the central maxillary teeth.² In an avulsion the periodontal membrane is separated, half of which is attached to the root and the other half is attached to the alveolar socket.³ Studies have shown that 10% of the population have experienced tooth traumas during their childhood, and 16.1% of them are faced with avulsed teeth.⁴,⁵

One of the main etiological factors for avulsion in a permanent dentition is sports activities and in the deciduous dentition is falling on hard objects.⁶ Owing to insufficient information regarding management of this matter in non-specialized personnel, when such instances occurs suitable treatment is not readily given.⁶ Healing after the incident depends highly on the immediate actions and procedures, which carried out to protect the avulsed teeth.⁷,⁸ Replantation was first mentioned in the 11th century by Abu Classis as a means for replacing a tooth that had come out of its socket.⁹,¹⁰
Avulsion mainly occurs in 7-11 year olds whose central incisors are starting to erupt, and the prognosis of replanting the avulsed tooth depends highly on preoperative factors such as time duration being out of oral cavity, substances applied to root surface and transferring media of the teeth, before the final treatment by dentists.

So far, many different studies are done about the level of knowledge of the dentist, athletic trainers and schools teachers in rural and urban areas in a different region of the world and also in Iran. These studies can be effective for planning in this field. The best treatment for avulsion is immediate replantation within 15 min. Due to the fact that most incidents occur during school time and 13-39% off all dental traumas occurs during sports period, it is important to evaluate the level of information that tutors, especially sports tutors have regarding this matter. If these individuals have a scientific and practical approach in dealing with avulsion incidents, the avulsed tooth can be saved more successfully, which could results from losing a tooth, in the future. Therefore, the aim of this study was to assess the knowledge of physical education teachers in Tehran, Iran, regarding managing of avulsed teeth.

Methods

The study was a cross-sectional investigation across a random sample of public primary schools located in 19 areas of Tehran. Sample size was calculated 160 for a descriptive design, considering previous studies. Participation to the study was on volunteer base after providing information to target group and reassurance of confidentiality of providing information. Data collection was continued to reach the required sample size. The questionnaire was designed using questionnaires in similar studies. Moreover, the validation was carried out in a panel expert and among 10 experts in the subjects. Cronbach’s alpha was calculated ($\alpha = 0.70$) and the questionnaire was modified after a pilot study among 20 subjects before the main study and their data were excluded from the analysis. The questionnaire completed by participants in the selected schools. As did the questionnaire has three sections, including demographic data (sex, age, work experience, experience of tooth avulsion), in the first part. Information regarding types of traumas to teeth was answered in the second part. The questions included two case of trauma to teeth.

Questions for Case 1 were: “A Maxillary anterior tooth of an 8-year-old girl was broken, but does not lose his consciousness: Is it a milk tooth? What is the most appropriate action for this event? And, the questions for case II (tooth coming out from the alveolar socket) was: “a maxillary anterior tooth of a 13-year-old boy was broken on event, what is the most appropriate for this event? And they had two correct answers. So if both right answers were chosen, the level of information was considered as good level, if one of the right answers was chosen, the level of information was moderate and if no correct answers were given the level of information was considered as poor. The third section of the questions was about the best time for replantation of avulsed teeth, the method of replantation, the method of cleaning the avulsed root surface and transferring media of the teeth. In this section, there were nine questions and each correct answer was considered one score. The scores accumulated for each respondent, and they were categorized to three groups. Scores 0-3 were classified as low information, those with a score of 4-6 had moderate information and those who scored 6-9 had a good level of information. The participants were categorized into two groups on the basis of their age for analyzing data. The data were analyzed using the SPSS software (version 18, SPSS Inc., Chicago, USA, IL) using the chi-square method.

Results

The data were analyzed for 156 subjects...
(86 male and 70 female) with response rate of 99%. The mean age of the subjects was 32 years, and the respondents have a mean of 8 years work experiences. Only 23% of teachers had experiences of a case of trauma to children teeth. Majority (67.1%) of teachers had moderate information regarding the second part of the questions, and 64.1% had a low level of information regarding questions in the third part (Figure 1). The chosen best materials for rinsing an avulsed tooth by the tutors were normal saline with 29% and alcohol with 19% consecutively (Figure 2). There was no significant difference between male and female teachers in relation to the second and third set of questions, (P > 0.050). Regarding relationship between age and awareness in the second and third parts of questions a statistically significant difference was observed (P < 0.050) (Table 1). This study indicated a positive effect on the level of knowledge about avulsion among people older than 40 years. There was also a statistically significant relationship between the level of knowledge regarding the third group of questions and having experience with avulsed teeth (P < 0.050) (Table 2). There was no significant relation between the years of work experiences and the level of awareness in the second and third group of questions (P > 0.050).

![Figure 1](http://johoe.kmu.ac.ir)
Figure 1. Level of participants’ knowledge about type of dental trauma and management of avulsed teeth, A: Second part questions and B: Third part questions

![Figure 2](http://johoe.kmu.ac.ir)
Figure 2. The best substance chosen by the tutors for protecting an avulsed tooth

HBSS: Hanks balanced salt solution
Table 1. Relationship between age and level of participants’ knowledge about type of dental trauma and management of avulsed teeth

<table>
<thead>
<tr>
<th>Questions</th>
<th>Knowledge of people</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weak</td>
<td>Moderate</td>
</tr>
<tr>
<td>Questions regarding type of trauma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under 40 years old</td>
<td>5.5</td>
<td>63.6</td>
</tr>
<tr>
<td>Above 40 years old</td>
<td>20.0</td>
<td>80.0</td>
</tr>
<tr>
<td>Questions regarding management of avulsed teeth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under 40 years old</td>
<td>61.8</td>
<td>29.1</td>
</tr>
<tr>
<td>Above 40 years old</td>
<td>86.7</td>
<td>13.3</td>
</tr>
</tbody>
</table>

*Significant

Table 2. Relationship between experience of avulsion and level of participants’ knowledge about type of dental trauma and management of avulsed teeth

<table>
<thead>
<tr>
<th>Questions</th>
<th>Knowledge of people (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weak</td>
<td>Moderate</td>
</tr>
<tr>
<td>Questions regarding type of trauma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With experience of avulsion</td>
<td>4.8</td>
<td>61.9</td>
</tr>
<tr>
<td>Without experience of avulsion</td>
<td>10.2</td>
<td>69.4</td>
</tr>
<tr>
<td>Questions regarding management of avulsed teeth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With experience of avulsion</td>
<td>47.6</td>
<td>47.6</td>
</tr>
<tr>
<td>Without experience of avulsion</td>
<td>75.5</td>
<td>16.3</td>
</tr>
</tbody>
</table>

*Significant

Discussion

It has been reported that replanted teeth could survive around 40 years and they can last from a few decades to a lifetime, and the average lasting period is around 5-10 years. Nevertheless, replantation (intentional replantation) after avulsion has received much attention in recent years, and it is important to prevent spending much money and time on lost teeth. The physical education teachers are one of the first people who are confronting traumatized teeth, and their role is important in preserving these teeth. Therefore, the purpose of this study was to help the matter by assessing the teacher’s knowledge. In fact, if the tooth is not replanted within 5 min, it should be kept in a storage media in order to maintain the vitality of the periodontal ligaments.

The study results showed there is some shortness in the knowledge of physical education teachers regarding traumatized teeth. In the study Newman and Crawford carried out in England to analyze the level of awareness of sports instructors, based on 66 candidates from this group, 43% had an adequate level of information regarding crown fractures. As the study results showed the level of adequate knowledge concerning how to deal with avulsed teeth in sports teachers in Tehran included 67.1% of the sample, which higher than the report of Kaur et al.’s study.

In study of Moieni et al. the level of knowledge of female sport instructors regarding avulsed teeth, has been reported 17.1% with low level of knowledge whereas in this study, only 8.6% of sports instructors had a low level of awareness. This difference is probably due to the lack of educational programs for target group, which leads to lack of knowledge in how to deal with such situations. In another study aimed at evaluating the level of awareness in dealing with avulsed teeth in male sport instructors, the same results as above were shown.

Furthermore in study of Sharifi et al. in analyzing the level of knowledge of primary school teachers in Kermanshah, Iran, in dealing with avulsed teeth was not enough which is in line with the results of this study.

In the study carried out by Vahhabi and Khoshsar on hygiene instructors in Tehran, 12.5% had medium awareness, 87.5% had a
good level of awareness and none had a low level of awareness. This difference in results is probably due to the different population being studied in this study and variation in the questions of the survey. Comparing the level of knowledge between male and female tutors, there was no significant difference and this goes to show that demographic factors have no effect on how much information the tutors have and it has also been reported in similar studies. The significant relation between the score of the tutors in the second and third section questions and their age in such a way showed an increase in age could likely increase in their knowledge and ability in dealing with avulsion. This finding is similar to study of Young et al. in Hong Kong. Hence, it showed how the experience can be the effect of on the knowledge of teachers. When comparing the knowledge of teachers in relation to avulsion, based on their experience in the past with this incident, the results showed that those with experience in dealing with avulsion have more information those without it. These results is in line with study of Fux-Noy et al. results, but differ from results of Moieni et al. and this may be due to the fact that less of population in that study had experience in dealing with this trauma.

Normal saline and alcohol were the most commonly chosen substances by teachers for rinsing and transferring the avulsed tooth. However, Hanks balanced salt solution (HBSS) is the best media available for storage of teeth after avulsion, but, unfortunately, is sparsely available in health centers in Iran. Milk has a suitable pH and osmotic pressure and can keep the tooth alive and free of infection. Approximately, 19% of people in this study chose milk as the rinsing and transferring media, but in study of Blaktynty et al. in England, 60.2% and in study of Touré et al. in Senegal 21.95% of people choose milk as transferring media.

However, the study results confirmed previous studies findings, but it need to assess the teacher's knowledge in periodical surveys at national levels due to supply of information from different sources specially mass media nowadays. There is also a big variation across the country, which the participated sample could not be a representative of the whole country.

Conclusion

The results of this study confirmed a low level of information among teachers in dealing with avulsion and about suitable storage media. Therefore, educational courses to promote the level of their knowledge could be very helpful, and it is recommended that this course be added to their academic teaching course or even professional education courses.

Conflict of Interests

Authors have no conflict of interest.

Acknowledgments

The author would like to thank Dr. Iraj Pakzad for providing me with this opportunity and monitoring me and guiding me through every phase of this research.

References

6. Andreasen JO, Borum MK, Jacobsen HL, Andreasen FM. Replantation of 400 avulsed permanent incisors. 4. Factors

A cross-sectional survey on the relationship between some biologic maternal characteristics and dental status of pregnant women in Isfahan, Iran, in 2012

Maryam Allameh DDS¹, Heidar Khademi DDS, MS², Masoomeh Esłami DDS³

Abstract

BACKGROUND AND AIM: Dental caries is an infectious and transmissible disease. The interplay between pregnancy and oral health is obvious, but the risk factors are not known yet. The objective of this study was to determine the relationship between some selected risk factors in pregnancy and the dental status.

METHODS: The study sample consisted of 377 pregnant women attended for their routine antenatal visit at public hospitals in Isfahan city in 2012. Data, including age, number of previous deliveries, mean of pregnancy interval and gestational age were determined using interviewer-filled questionnaires. Oral health examination was performed by assessing mean number of decayed, missed and filled teeth (DMFT), according to the World Health Organization (WHO) criteria. Spearman analysis was used to identify maternal characteristics correlated to dental status.

RESULTS: The mean (± standard deviation) DMFT among antenatal women were 10.6 ± 4.21, with 4.10 ± 2.23 decayed teeth, 4.15 ± 2.12 missed teeth, and 2.32 ± 1.46 filled teeth. No significant difference of DMFT means were observed among the 3 gestation periods (P > 0.05). Moreover, the Spearman correlation test showed that the trend is for the DMFT to increase with age and the number of deliveries (P < 0.05).

CONCLUSION: Results of the present study showed that the age of mother and number of previous deliveries are the risk factors for increasing DMFT. The importance of dental care and decreasing risk factors before and during pregnancy must be educated widely among both the public and providers.

KEYWORDS: Decayed, Missed and Filled Teeth, Iran, Pregnant Women, Risk Factors

Tooth decay is an infectious, transmissible disease commonly affected from biological, behavioral and socio-economic factors. In industrialized countries, it involves about 40-50% of adults.¹² Up to know many preventive approaches have been examined in different target populations to reduce dental decay in the whole community. For example, USA office of disease prevention and health promotion in 2010 established objectives to reduce disparities among preschool children.³ However, programs aimed at reducing disparities by focusing exclusively on children have encountered several barriers such as negative interactions with dentists and problems with access to dental care.⁴⁵ Gradually health care providers realized that to promote community oral health the preventive oral health schedules should be started earlier before the child is born.³ In this respect it is suspected that whenever oral health status in mothers is enhanced, both mother and child would experience benefits.⁶ Some of the examples of mothers’ oral health influences on oral health of their children are
as following: (1) Mothers with high caries levels can transmit tooth decay pathogens such as Streptococcus mutans to their children by saliva\(^7\)\(^8\) (2) previous investigations show that there is a relationship between mother’s oral hygiene and her pursuit for better oral health of her child\(^9\)\(^10\) This concept is not new, and has led to the formulation of policies to improve maternal health\(^11\)\(^12\) these programs mainly focus on pregnancy period of a woman life. However, recently Massachusetts extended dental care services to mothers from pregnancy to 3 years after the baby is born\(^13\).

Pregnancy is a cornerstone of a mother’s life; in this time women may be more motivated to make healthy changes. Physicians can comment on their oral health issues, reduce the risk of mothers and so childhood caries through oral disease prevention, diagnosis, early management, and dental referral\(^14\) Although pregnancy in itself has never been clearly associated with an increased incidence of dental caries, oral health indices in this period are higher than the general population\(^15\)\(^16\)\(^17\)\(^18\) This may be due to financial, personal, and social barriers\(^19\)\(^20\)\(^21\) less desire to receive dental services in this period (may be as a result of concerns for fetal safety during dental treatment from both practitioner and mother), or may be as a result of intraoral biologic changes such as hormonal imbalance, low oral cavity pH caused by frequent refluxes\(^15\). To offer a comprehensive preventive program for oral health promotion, it is important to determine, which factors exactly place pregnant women at higher risk for dental infections. Although many studies have assessed social or behavioral risk indicators in mothers’ oral health\(^22\)\(^23\)\(^24\)\(^25\)\(^26\)\(^27\)\(^28\) investigations to denote biologic risk factors are scarce.

In a study evaluating the correlation of pregnancy, caries and gingivitis the authors reported an increase in caries intensity with advancing age and a higher rate of caries in women who delivered 1 or 2 times than those who had no child\(^29\). In another research conducted by Radnai et al\(^30\), no significant correlation was founded between the number of previous pregnancy and the incidence of caries.

In contrast to Jago et al\(^31\) and Kumar and Samelson\(^12\) investigations, Vergnes et al\(^16\) demonstrated a higher caries prevalence in the lower aged pregnant population. Furthermore, a significant correlation was detected between the trimester of pregnancy (gestational age) and the rate of missing teeth and decayed, missed and filled teeth (DMFT) in Kumar and Samelson study\(^12\).

The purpose of the present study was to evaluate the oral health status of antenatal women referred to governmental hospitals in Esfahan and to investigate its relationship with some of the maternal biologic risk indicators.

Methods

The present study involved a cross-sectional, population-based survey of a sample of 377 Isfahani pregnant mothers attended for their routine antenatal visits from September until December in 2012 at public hospitals in Isfahan, Iran. The selection criteria for the participants of the present study were as follow: more than 16 years of age; do not have any mental or physical disease; have not received any medical treatment in the current pregnancy; being a moderate economic status (detected by directly asking family income and accessibility to health care services). They were all informed of the scope of the study and their written consent was obtained prior to clinical examination.

The survey collected data on maternal characteristics (age, number of pregnancies, pregnancies’ intervals, gestational age) using an interviewer-administered pre-tested questionnaire. To assess dental status the DMFT index was measured for each individual as the sum of D + M + F (D = decayed teeth, M = missing teeth, which account for extracted teeth exclusively due to...
Biologic maternal characteristics and dental status

Allameh et al.

74 J Oral Health Oral Epidemiol/ Summer & Autumn 2014; Vol. 3, No. 2

in this study most of them (65.0%) were aged between 20 and 30 years old. More than one-half (55.9%) of pregnant women were in their third trimester while the minority (14.5%) were in their first trimester. The majority of women had experienced at least one birth prior to the index pregnancy, and the mean number of pregnancies in this study group was 1.99. The average of pregnancy intervals was 2.28 years and in up to 40% of cases the interval between this pregnancy and the previous one was below 1 year. Descriptive data about the means of D, M, F and DMFT for each maternal variable are presented in tables 1-4.

The mean DMFT among the whole sample were 10.60 ± 4.50, with 4.10 ± 2.23 decayed teeth (D); 4.15 ± 2.12 missing teeth (M), and 2.32 ± 1.46 filled teeth (F), indicating that average 10 teeth were affected among pregnant women with at least 4 of these teeth

Results

Of a total of 377 pregnant women participated in this study most of them (65.0%) were aged between 20 and 30 years old. More than one-half (55.9%) of pregnant women were in their third trimester while the minority (14.5%) were in their first trimester. The majority of women had experienced at least one birth prior to the index pregnancy, and the mean number of pregnancies in this study group was 1.99. The average of pregnancy intervals was 2.28 years and in up to 40% of cases the interval between this pregnancy and the previous one was below 1 year. Descriptive data about the means of D, M, F and DMFT for each maternal variable are presented in tables 1-4.

The mean DMFT among the whole sample were 10.60 ± 4.50, with 4.10 ± 2.23 decayed teeth (D); 4.15 ± 2.12 missing teeth (M), and 2.32 ± 1.46 filled teeth (F), indicating that average 10 teeth were affected among pregnant women with at least 4 of these teeth

Table 1. Mean scores of D, M, F, DMFT (± SD) according to age of mother

<table>
<thead>
<tr>
<th>Age range (year)</th>
<th>D</th>
<th>M</th>
<th>F</th>
<th>DMFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20</td>
<td>3.15 ± 1.24</td>
<td>0.57 ± 1.09</td>
<td>1.66 ± 0.55</td>
<td>5.38 ± 2.92</td>
</tr>
<tr>
<td>21-30</td>
<td>3.31 ± 1.30</td>
<td>1.34 ± 0.56</td>
<td>2.55 ± 1.93</td>
<td>7.19 ± 3.48</td>
</tr>
<tr>
<td>31-40</td>
<td>3.65 ± 1.00</td>
<td>3.35 ± 2.65</td>
<td>3.54 ± 3.00</td>
<td>10.53 ± 4.21</td>
</tr>
<tr>
<td>> 40</td>
<td>4.50 ± 1.87</td>
<td>7.00 ± 2.10</td>
<td>3.83 ± 3.37</td>
<td>15.33 ± 5.27</td>
</tr>
</tbody>
</table>

DMFT: Decayed, missed, and filling teeth; D: Decayed; M: Missing; F: Filled; T: Teeth; SD: Standard deviation

Table 2. Mean scores of D, M, F, DMFT (± SD) according to mean of pregnancy interval

<table>
<thead>
<tr>
<th>Mean of pregnancy interval (year)</th>
<th>D</th>
<th>M</th>
<th>F</th>
<th>DMFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.19 ± 0.93</td>
<td>2.25 ± 2.40</td>
<td>1.66 ± 2.13</td>
<td>7.09 ± 3.97</td>
</tr>
<tr>
<td>2</td>
<td>3.97 ± 1.23</td>
<td>2.97 ± 2.96</td>
<td>2.45 ± 1.99</td>
<td>9.37 ± 4.59</td>
</tr>
<tr>
<td>3</td>
<td>3.47 ± 1.00</td>
<td>2.06 ± 2.28</td>
<td>3.42 ± 2.88</td>
<td>8.94 ± 4.20</td>
</tr>
<tr>
<td>4</td>
<td>3.42 ± 1.21</td>
<td>1.67 ± 1.43</td>
<td>3.04 ± 2.46</td>
<td>8.12 ± 3.27</td>
</tr>
<tr>
<td>5</td>
<td>3.13 ± 1.77</td>
<td>2.26 ± 2.12</td>
<td>3.17 ± 2.71</td>
<td>8.56 ± 3.65</td>
</tr>
<tr>
<td>6</td>
<td>2.92 ± 0.76</td>
<td>1.54 ± 1.66</td>
<td>4.08 ± 3.45</td>
<td>8.53 ± 4.23</td>
</tr>
<tr>
<td>7</td>
<td>3.23 ± 0.83</td>
<td>1.92 ± 1.32</td>
<td>5.23 ± 2.13</td>
<td>10.38 ± 3.06</td>
</tr>
<tr>
<td>8</td>
<td>4.11 ± 2.30</td>
<td>1.61 ± 1.50</td>
<td>2.78 ± 3.89</td>
<td>8.50 ± 4.60</td>
</tr>
</tbody>
</table>

DMFT: Decayed, missed, and filling teeth; D: Decayed; M: Missing; F: Filled; T: Teeth; SD: Standard deviation

Table 3. Mean scores of D, M, F, DMFT (± SD) according to number of previous deliveries

<table>
<thead>
<tr>
<th>Number of previous deliveries</th>
<th>D</th>
<th>M</th>
<th>F</th>
<th>DMFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.00 ± 1.25</td>
<td>2.19 ± 1.24</td>
<td>1.80 ± 2.13</td>
<td>6.00 ± 4.24</td>
</tr>
<tr>
<td>1</td>
<td>3.16 ± 1.19</td>
<td>0.81 ± 1.17</td>
<td>2.14 ± 2.86</td>
<td>6.10 ± 3.22</td>
</tr>
<tr>
<td>2</td>
<td>3.28 ± 1.36</td>
<td>1.72 ± 1.87</td>
<td>2.71 ± 2.75</td>
<td>8.29 ± 3.46</td>
</tr>
<tr>
<td>3</td>
<td>3.77 ± 0.92</td>
<td>3.05 ± 2.48</td>
<td>3.59 ± 2.52</td>
<td>10.40 ± 3.92</td>
</tr>
<tr>
<td>4</td>
<td>4.00 ± 1.05</td>
<td>4.70 ± 2.26</td>
<td>2.20 ± 3.68</td>
<td>10.40 ± 3.92</td>
</tr>
<tr>
<td>5</td>
<td>4.00 ± 1.05</td>
<td>4.70 ± 2.26</td>
<td>2.20 ± 3.68</td>
<td>10.90 ± 5.27</td>
</tr>
<tr>
<td>6</td>
<td>4.00 ± 0.82</td>
<td>6.50 ± 2.52</td>
<td>3.00 ± 3.46</td>
<td>13.50 ± 6.55</td>
</tr>
<tr>
<td>7</td>
<td>4.33 ± 0.58</td>
<td>7.67 ± 4.04</td>
<td>4.33 ± 3.90</td>
<td>16.33 ± 7.37</td>
</tr>
</tbody>
</table>

DMFT: Decayed, missed, and filling teeth; D: Decayed; M: Missing; F: Filled; T: Teeth; SD: Standard deviation
Table 4. Mean scores of \(D, M, F, \) \(\text{DMFT} (\pm \text{SD}) \) according to gestational age

<table>
<thead>
<tr>
<th>Gestational age (month)</th>
<th>(D)</th>
<th>(M)</th>
<th>(F)</th>
<th>(\text{DMFT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.06 ± 1.00</td>
<td>1.80 ± 0.19</td>
<td>1.54 ± 1.33</td>
<td>5.40 ± 2.25</td>
</tr>
<tr>
<td>2</td>
<td>2.75 ± 0.50</td>
<td>2.25 ± 1.26</td>
<td>3.00 ± 1.83</td>
<td>8.00 ± 2.44</td>
</tr>
<tr>
<td>3</td>
<td>2.82 ± 1.08</td>
<td>0.82 ± 1.78</td>
<td>2.55 ± 1.66</td>
<td>6.18 ± 2.96</td>
</tr>
<tr>
<td>4</td>
<td>3.64 ± 2.29</td>
<td>1.82 ± 1.94</td>
<td>2.27 ± 3.20</td>
<td>7.72 ± 4.81</td>
</tr>
<tr>
<td>5</td>
<td>3.59 ± 1.84</td>
<td>2.00 ± 2.20</td>
<td>2.06 ± 2.88</td>
<td>7.64 ± 4.49</td>
</tr>
<tr>
<td>6</td>
<td>3.48 ± 1.78</td>
<td>1.00 ± 1.14</td>
<td>1.71 ± 2.15</td>
<td>6.19 ± 3.35</td>
</tr>
<tr>
<td>7</td>
<td>3.32 ± 1.12</td>
<td>1.95 ± 2.42</td>
<td>2.75 ± 2.84</td>
<td>8.01 ± 3.98</td>
</tr>
<tr>
<td>8</td>
<td>3.35 ± 1.22</td>
<td>1.33 ± 1.70</td>
<td>3.05 ± 3.24</td>
<td>7.73 ± 3.98</td>
</tr>
<tr>
<td>9</td>
<td>3.38 ± 1.14</td>
<td>1.70 ± 2.06</td>
<td>2.55 ± 2.87</td>
<td>7.61 ± 4.04</td>
</tr>
</tbody>
</table>

DMFT: Decayed, missed, and filling teeth; D: Decayed; M: Missing; F: Filled; T: Teeth; SD: Standard deviation

having untreated dental caries. On average, among pregnancy months the highest mean of DMFT was related to 7th month; similarly, the highest mean of decayed teeth was in 4th month, the highest average of missing teeth was in 2nd month and in 6th month the average of filled teeth was the most. Nevertheless, table 5 shows there is not any significant relationship between D, M, F and DMFT with gestational age.

As it is demonstrated in table 5, the means of DMFT were correlated with the numbers of previous deliveries: Antenatal women who had experienced more than 3 deliveries, had significantly higher amounts of decayed, missed, filled teeth and DMFT compared with women in their intimate pregnancies (\(P < 0.05 \)). Moreover, there is a significant correlation between F and mean pregnancies’ interval. It is also followed from the table that the trend is for DMFT to increase with age: women aged 40 years and more presented a significantly higher number of decayed, missed, filled teeth and mean DMFT.

Discussion

Mean score of DMFT index in this study was 10.60 ± 4.21 with an average of 4.15 ± 2.12 for decayed teeth. A similar score was found in the city of Mashhad, Iran;\(^{22}\) where pregnant women had a mean DMF-T index of 10.29 ± 4.92 and an average D component equal to 5.55 ± 3.77 and Manaus, Amazonas (Brazil)\(^{33}\) with the mean score of 10 for DMFT index. However, lower scores among pregnant women were found in Ahvaz (Iran),\(^{34}\) where the average DMF-T index was 6.23 ± 3.01. Perhaps this discrepancy can be explained by differences of dietary habits of people in southern areas of Iran (like Ahvaz); as they consume more seafood and water (which naturally contain fluoride) due to climatic characteristics of these regions.\(^{35}\)

When comparing the prevalence of dental caries and mean of DMFT among pregnant and average population in the same range of age,\(^{36}\) no significant difference was observed. The objective of this survey was to study the risk indicators associated with tooth decay and DMFT during pregnancy; we found that the mean DMF-T index and prevalence of dental caries among gravid women are positively correlated with age. This data confirms the results of Karunachandra et al.\(^{27}\)

Table 5. Spearman test of correlation between dental indices and risk indicators

<table>
<thead>
<tr>
<th>Index</th>
<th>Age</th>
<th>Number of previous deliveries</th>
<th>Mean of pregnancy interval</th>
<th>Gestational age</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMFT</td>
<td>0.480</td>
<td>0.371</td>
<td>0.110</td>
<td>0.029</td>
</tr>
<tr>
<td>(P < 0.001^*)</td>
<td>0.017</td>
<td>< 0.001^*</td>
<td>0.017</td>
<td>0.572</td>
</tr>
<tr>
<td>D</td>
<td>0.195</td>
<td>0.262</td>
<td>−0.107</td>
<td>0.051</td>
</tr>
<tr>
<td>(P < 0.001^*)</td>
<td>0.017</td>
<td>< 0.001^*</td>
<td>0.118</td>
<td>0.321</td>
</tr>
<tr>
<td>M</td>
<td>0.466</td>
<td>0.418</td>
<td>−0.077</td>
<td>0.041</td>
</tr>
<tr>
<td>(P < 0.001^*)</td>
<td>0.017</td>
<td>< 0.001^*</td>
<td>0.258</td>
<td>0.425</td>
</tr>
<tr>
<td>F</td>
<td>0.289</td>
<td>0.160</td>
<td>0.225</td>
<td>0.009</td>
</tr>
<tr>
<td>(P < 0.001^*)</td>
<td>0.017</td>
<td>0.001^*</td>
<td>0.862</td>
<td>0.862</td>
</tr>
</tbody>
</table>

Significant at \(\alpha = 5\% \); DMFT: Decayed, missed, and filling teeth; D: Decayed; M: Missing; F: Filled
and Jago et al.31 studies; however, it is in conflict with Vergnes et al.16 investigation that demonstrated tooth decay among pregnant women in France was statistically associated with lower age. Nevertheless, data achieved in the present study is in agreement with the findings of Pakshir36 who showed in the general population of Iran prevalence of decayed teeth and mean DMFT score increases with advancing age. This may reflect the promoted awareness of individuals to health care behaviors with advancing age in developed countries like France and on the other hand double the importance of launching educational programs with adequate follow-ups to control its efficacy in different stages of a person life.

Number of previous deliveries as a predisposing factor for tooth decay has already been studied in Radnai et al.37 survey, which demonstrated no correlation with tooth decay incidence, in spite of showing a significant relationship with DMFT index. In the present study, a significant association was found between the number of previous pregnancies with both DMFT index and the number of decayed teeth. Although not explored in the present investigation, this may be attributable to improper dietary habits and less self-care in women with more deliveries. Hence, older pregnant women and women with more previous deliveries may need more oral and nutritional health care than younger prenatal women expecting their first or the second baby.

Similar to gingivitis, which is aggravated by fluctuations in hormones during pregnancy,15 significant differences were noticed between the trimesters of pregnancy for mean decayed component,38 and as the etiologies of caries flare during and after pregnancy is not well understood, achieving a good caries control by managing peripheral factors such as appropriate oral hygiene and instructing self-care to mothers is suggested.39 For this and other reasons, it is necessary to conduct prenatal appointments along with more educating approaches in order to preclude dental conditions from worsening later during and after pregnancy. In the present study although an increasing manner was observed in D component with advancement of gestational age but the difference was not significant ($P = 0.051$).

In this study, the relation was detected between F component and pregnancies’ intervals. Given the above, the data suggest that there may be barriers that make it difficult for this population to obtain care, such as child bearing and homework after delivery, which make them to stay at home and even they do not feel any need for self-care.40 Hence, it is recommended that in antenatal visits health professionals and obstetrician educate women about the importance of maintaining sufficient intervals between pregnancies.

As the sampling in the present study was performed in Isfahan, the results of the present study should not be generalized to the whole nation. A limitation of the present study was the lack of information on the social background of the sample population, and it is suggested in future studies to assess biologic markers in the context of the individual’s socio-economic status.

Conclusion

Taken together, our data demonstrated that the oral health status of Isfahanian pregnant women was not satisfactory and there were some risk factors (age and number of previous deliveries) significantly correlated with DMFT index in pregnant women. It will be interesting to see these results confirmed in larger populations as they may add to our understanding of risk indicators and their prevention ways to maintain good oral condition during and after pregnancy. The importance of dental care and decreasing risk factors before and during pregnancy must be educated widely among both the public and providers.

Conflict of Interests

Authors have no conflict of interest.
Acknowledgments
This study was supported by a grant from the vice chancellor of Research of the Isfahan University of Medical Sciences.

References
The detection of salivary glucose, caries and periodontal status in patients with diabetes mellitus

Shahla Kakoei DDS, MSc1, Bahareh Hosseini DDS, MSc2, Ali Akbar Haghdoost PhD3, Mojgan Sanjari MD4, Maryam Alsadat Hashemipour DDS, MSc2, Ahmad Gholamhosseinian PhD5

Abstract

BACKGROUND AND AIM: Oral manifestations in patients with diabetes mellitus (DM) can have different causes. Possibly, one of these causes is salivary glucose. The aim of this study was to evaluate salivary glucose concentrations in patients with Type II DM and their association with oral and dental manifestations and compare them with normal adults.

METHODS: In this analytical study, 128 patients with Type II DM and 132 non-diabetic healthy individuals were selected. The subjects’ blood and unstimulated salivary samples were collected. Salivary glucose concentrations were measured by glucose oxidase method. Then, the oral cavity and teeth were examined for oral manifestations such as ulcers, white and red plaques, lichenoid reaction, candidiasis and decayed missing filled teeth (DMFT) and periodontal disease index (PDI) indices. Data were analyzed by independent t-test and Pearson’s correlation test.

RESULTS: The results of the present study showed that, in general, individuals with higher concentrations of salivary glucose had significantly higher DMFT and PDI, irrespective of belonging to the diabetic or the control group (P < 0.050). However, there was no significant correlation between salivary glucose concentrations and oral manifestations. Meanwhile, there was a significant correlation between salivary glucose concentration and glycated hemoglobin in patients with DM compared with the control group (P < 0.001).

CONCLUSION: The present study showed that the salivary glucose concentration had a positive association with DMFT and PDI in patients with DM and non-diabetic. In this study, we found an association between salivary and blood glucose in patients with DM.

KEYWORDS: Diabetes Mellitus, Decayed Missing Filled Teeth, Oral Manifestation, Periodontal Disease Index, Salivary Glucose

Diabetes mellitus (DM) is a metabolic disorder that can have many oral manifestations, including xerostomia, bacterial, viral and fungal infections, poor wound healing, tooth cavities, gingivitis, periodontitis, periapical abscesses and burning mouth syndrome.\(^1\) Increased fluid excretion, lowered response to infections, microvascular changes and possibly increased salivary glucose concentrations can be found in DM patients.\(^2\) Worldwide, researchers are interested in using saliva as a diagnostic fluid that contains proteins, enzymes, hormones and...
carbohydrates; in addition, this fluid is readily available.3 Glucose is a small molecule that easily penetrates via vessels and is transported from serum to gingival fluids and enters saliva.4

Investigations on salivary and blood glucose have shown varying results regarding the concentration of blood and salivary glucose between DM patients and healthy individuals.3-7 Several studies have not shown an association between blood and salivary glucose,3,4 whereas others have shown a statistically significant association between blood and salivary glucose.5-7 Most investigations on salivary glucose have focused on its relationship with the blood glucose concentration as well as its association with oral manifestations in patients with DM. None of the previous investigations has reported an association between either blood or salivary glucose and a higher number of tooth cavities and other oral manifestations in healthy individuals. Therefore, the aim of the present study was to investigate blood glucose levels in healthy subjects and patients with DM as well as healthy individuals and determine if there is any association between higher oral glucose concentrations with oral manifestations, such as tooth cavities, periodontal diseases, candidiasis, lichenoid reaction and xerostomia.

Methods

The subjects consisted of 260 individuals in two separate groups. The first group consisted of 128 patients suffering from DM, referring to the Diabetes Clinic of Bahonar Hospital for routine check-ups. The second group (132 persons) were selected from those who referred to two laboratory centers in Kerman, Iran (Razi Laboratory and Besat Clinical Laboratory) for their annual medical check-ups with no history of DM. Subjects with no history of smoking, a minimum age of 20, and 8 h of fasting before collecting their blood and salivary samples were selected for the study. We also made sure that the healthy group with fasting blood sugar (FBS) lower than 100 mg/dl had no systemic diseases and did not take medications influencing either the secretion or the glucose level of the saliva.4 All the volunteers were asked to clean their teeth and mouth at least 90 min before sampling and were also asked to present themselves for sampling at 7:30-9 am.

The criteria for diagnosis of DM in the first group consisted of:

Glycated hemoglobin (HbA\textsubscript{1C}) equal or greater than 6.5%; fasting plasma glucose ≥ 126 mg/dl; 2 h plasma glucose ≥ 200 mg/dl or in patients with the classic symptoms of hyperglycemia and crisis hyperglycemia and one accidental plasma glucose ≥ 200 mg/dl.8

After the objectives and procedures had been explained, the subjects signed informed consent forms. A trained post graduate student completed an information checklist containing age, gender, type of diabetes and the last medical examinations including FBS and HbA\textsubscript{1C}. The oral mucosa was examined for any oral abnormalities, including ulcers, white and red plaques, lichenoid reaction, hyperplastic candidiasis, erythematous candidiasis, thrush, angular cheilitis, denture stomatitis, and median rhomboid glossitis9 and the characteristics of the lesions and their location.

In order to check the condition of the teeth in terms of the presence of cavities, the World Health Organization guidelines were used to calculate index of the sum of decayed teeth, absent teeth due to decayed missing filled teeth (DMFT).10 Tissues supporting the teeth were examined with the aid of periodontal disease index (PDI) and 6 specific teeth, namely central and upper left first premolar, upper right first molar, lower left first molar and central and lower right first premolar were examined.11 Xerostomia was evaluated based on Fox questionnaire.12 In the present study, all the individuals were asked about any complaint of mouth soreness.

Unstimulated salivary samples were collected by the spitting method.3 The
patients were asked, after some rest, to keep their mouth closed and not swallow their saliva for a few minutes; then they held their head above the saliva collecting container and poured their saliva (1-2 ml) into it. The sampling container was frozen at -20 °C and sent to the laboratory (3). The saliva glucose concentration was measured by glucose oxidase enzyme method using a special kit (Pars Azmun Co., Tehran, Iran) and an autoanalyzer machine (Tecknicon Co., RA-1000, USA).

This analytical and cross-sectional study was approved by the Ethics Committee (KA/90-521) of Kerman University of Medical Sciences. Data were analyzed using independent t-test and Pearson correlation test.

Results
A total of 260 individuals, including DM patients (35 males and 93 females) and healthy individuals (51 males and 81 females), were examined. Age of the participants ranged between 20 and 83 with an average of 47.06 years. There was no significant difference in salivary glucose between the two groups in terms of age but salivary glucose concentration in healthy males was significantly higher than that in females (Table 1).

Patients with DM whose HbA1C results were available had higher salivary glucose concentration (P < 0.001) (Table 1). The means of salivary glucose concentrations in the healthy and diabetic groups were 8.98 (± 0.76) and 10.05 (± 0.84) mg/dl, respectively, with no significant difference between the two groups (P = 0.310) (Table 1).

In healthy individuals no significant association was found between FBS and salivary glucose concentration (P = 0.420, r = 0.07), in contrast to the diabetics group in which there was a significant association between blood and salivary glucose concentrations (P = 0.040, r = 0.70). There was a significant association between HbA1C and salivary glucose concentration (P < 0.001, r = 0.62) (Table 1).

In this study, there were significantly higher DMFT (10.95 vs. 7.25) and PDI (3.53 vs. 2.57) in DM patients compared to healthy individuals (P < 0.001). In addition, there was a significant association between high salivary glucose concentration and higher DMFT and PDI, irrespective of the presence of DM (P < 0.001) (Table 1). The prevalence of oral manifestations in the two healthy and diabetics groups as shown in table 2.

Two individuals from the healthy group and thirty patients from the diabetics group

<table>
<thead>
<tr>
<th>Salivary glucose</th>
<th>P, r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age</td>
</tr>
<tr>
<td>Normal</td>
<td>0.870, -0.01</td>
</tr>
<tr>
<td>Diabetic</td>
<td>0.300, 0.09</td>
</tr>
<tr>
<td>Total</td>
<td>0.250, 0.07</td>
</tr>
</tbody>
</table>

P < 0.050 statistically significant
FBS: Fasting blood sugar; DMFT: Decayed missing filled teeth; PDI: Periodontal disease index

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Healthy group [n (%)]</th>
<th>Patients with DM [n (%)]</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidiasis</td>
<td>6 (4.5)</td>
<td>23 (17.6)</td>
<td>0.001*</td>
</tr>
<tr>
<td>Lichenoid reaction</td>
<td>2 (1.5)</td>
<td>2 (1.5)</td>
<td>0.990</td>
</tr>
<tr>
<td>Frequent abscess</td>
<td>0 (0.0)</td>
<td>8 (6.2)</td>
<td>0.002*</td>
</tr>
<tr>
<td>Tongue blade sign</td>
<td>3 (2.3)</td>
<td>39 (30.4)</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>Xerostomia</td>
<td>3 (2.3)</td>
<td>46 (35.9)</td>
<td>< 0.001*</td>
</tr>
</tbody>
</table>

P < 0.050 statistically significant; DM: Diabetes mellitus
Table 3. Comparing the salivary glucose concentration in those with and without oral manifestation, classified by diabetes status

<table>
<thead>
<tr>
<th>Oral manifestations</th>
<th>Total</th>
<th>Diabetic group</th>
<th>Healthy group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean of saliva Glucose (mg/dl) (SE)</td>
<td>P</td>
<td>Mean of saliva Glucose (mg/dl) (SE)</td>
</tr>
<tr>
<td>Candida erythematous Yes</td>
<td>2 (0.00)</td>
<td>10.67 (5.23)</td>
<td>0.430</td>
</tr>
<tr>
<td>Candida erythematous No</td>
<td>8.9 (0.76)</td>
<td>10.03 (0.85)</td>
<td>10.25 (2.87)</td>
</tr>
<tr>
<td>Thrush Yes</td>
<td>3.5 (1.50)</td>
<td>10.67 (5.23)</td>
<td>0.520</td>
</tr>
<tr>
<td>Thrush No</td>
<td>8.9 (0.77)</td>
<td>10.03 (0.85)</td>
<td>10.25 (2.87)</td>
</tr>
<tr>
<td>Median rhomboid glossitis</td>
<td>-</td>
<td>12 (4.04)</td>
<td>0.720</td>
</tr>
<tr>
<td>Median rhomboid glossitis No</td>
<td>8.89 (0.76)</td>
<td>10 (0.85)</td>
<td>9.43 (0.57)</td>
</tr>
<tr>
<td>Denture stomatitis Yes</td>
<td>2.5 (0.50)</td>
<td>8.53 (1.88)</td>
<td>0.300</td>
</tr>
<tr>
<td>Denture stomatitis No</td>
<td>8.9 (0.77)</td>
<td>10.25 (0.92)</td>
<td>10.3 (0.85)</td>
</tr>
<tr>
<td>Angular cheilitis Yes</td>
<td>4 (2.00)</td>
<td>13.75 (4.85)</td>
<td>0.420</td>
</tr>
<tr>
<td>Angular cheilitis No</td>
<td>8.9 (0.77)</td>
<td>9.2 (0.84)</td>
<td>9.51 (0.57)</td>
</tr>
<tr>
<td>Lichenoid reaction Yes</td>
<td>8 (0.01)</td>
<td>5 (3.00)</td>
<td>0.240</td>
</tr>
<tr>
<td>Lichenoid reaction No</td>
<td>8.9 (0.77)</td>
<td>10.3 (0.85)</td>
<td>9.51 (0.57)</td>
</tr>
<tr>
<td>Frequent abscess Yes</td>
<td>-</td>
<td>14.63 (4.1)</td>
<td>0.160</td>
</tr>
<tr>
<td>Frequent abscess No</td>
<td>8.89 (0.76)</td>
<td>9.74 (0.83)</td>
<td>9.3 (0.57)</td>
</tr>
<tr>
<td>Tongue blade sign Yes</td>
<td>16.67 (6.17)</td>
<td>11.21 (1.50)</td>
<td>0.120</td>
</tr>
<tr>
<td>Tongue blade sign No</td>
<td>8.71 (0.76)</td>
<td>9.54 (1.01)</td>
<td>9.05 (0.61)</td>
</tr>
<tr>
<td>Xerostomia (Fox) Yes</td>
<td>16.67 (6.17)</td>
<td>11.04 (1.42)</td>
<td>0.120</td>
</tr>
<tr>
<td>Xerostomia (Fox) No</td>
<td>8.71 (0.76)</td>
<td>9.49 (1.04)</td>
<td>9.01 (0.60)</td>
</tr>
</tbody>
</table>

P < 0.050 statistically significant; SE: Standard error

Suffered from burning mouth syndrome. Oral examinations of all these subjects confirmed the presence of local factors, including Candida infection and xerostomia. There was no significant association between salivary glucose concentration and oral manifestations in healthy and diabetic groups (P > 0.050) (Table 3). Overall, there was no significant association between salivary glucose level and oral manifestations in all the participants (P > 0.050) (Table 3).

Discussion
Nowadays, many studies are trying to use saliva in diagnosis or even monitoring the level of control of the diseases. Saliva is a complex fluid that is produced in salivary glands and can take some substances from the blood. Possibly, saliva component changes show some systemic diseases or cause changes on oral mucosa surface. Since Jurysta et al. reported no differences in glucose concentrations of in stimulated and non-stimulated salivary flow in normal and diabetic individuals, in present study unstimulated saliva was used. The present study showed that higher salivary glucose level is associated with higher DMFT and PDI, regardless of the individuals' health status. In addition, the present study showed no significant difference between high salivary glucose concentration and oral manifestations such as ulcers and Candida infections. One of the findings of the present study was higher salivary glucose concentrations in male
healthy patients compared to the female healthy ones, but there was no significant difference between two genders in diabetics group which the latter agrees with the findings of Panchbhai et al.13

This study showed that the concentration of salivary glucose in patients with DM was not significantly higher than that in healthy individuals (P > 0.050), consistent with the results of two previous studies1,14 and in contrast with those of some other studies3,15,16 These differences of analysis results might be due to different methods of measurement of salivary glucose or collecting the samples. In addition, the level of maintaining oral hygiene and plaque on teeth can influence on salivary glucose. In this study, blood glucose did not show any significant association with salivary glucose in non- patients with DM (P > 0.050). Previous studies have shown the same results.4,17 However, in patients with DM this association was weakly significant, consistent with some previous studies.5,7,13,18,19

In the present study, patients with DM with high HbA1C had higher salivary glucose concentrations (P < 0.001). This correlation was found in a study by Reuterving et al.18 but was in contrast with the results reported by Darwazeh et al.19 However, the previous studies had conflict on this matter.

In the present study, there was a significant association between salivary glucose and DMFT and PDI indices in normal and patients with DM. One may argue that oral hygiene has an influence on oral indices, and we could not evaluate the quality of oral cleanliness in the subjects, but this is one of the limitations of the present study. However, the PDI and DMFT indices were significantly higher in patients with DM in the present study (P < 0.001). Bakianian et al.1 and Lopez et al.5 have reported similar results.

The increasing rate of dental caries and periodontal problems in patients with DM can be due to xerostomia, saliva protection impairment related immune system, acidogenic microorganisms and poor oral hygiene and plaque accumulation.1

In the present study, there was no significant relationship between the concentration of salivary glucose and Candida infection in patients with DM and non-diabetic individuals (P > 0.050), consistent with previous studies.20,21 However, these studies showed that high carrier state of Candida does not result in oral candidiasis and glucose concentration cannot predict the prevalence of such infections.20,21 The present study did not show any significant association between salivary glucose and oral manifestations in DM and non-DM patients (P > 0.050). Therefore, it can be assumed that other factors such as microvascular deterioration, immune system response and infection mediators influence oral manifestations in patients with DM.22

This study had several limitations. For instance, we could not gather HbA1C data in all the patients with DM; in addition, we could not match the participants based on gender and age and we were unable to control oral hygiene before sampling. We hope this preliminary study can pave the way for better designed research studies.

Conclusion

The present study showed that the salivary glucose concentration had a positive association with DMFT and PDI in patients with DM and non-diabetic. In this study, we found an association between salivary and blood glucose in patients with diabetes mellitus.

Conflict of Interests

Authors have no conflict of interest.

Acknowledgments

This article is obtained from post graduate thesis. The authors wish to thank research committee of Kerman university of Medical Sciences for their financial support.
References

A comparative study of the cleaning effect of various ultrasonic cleaners on new, unused endodontic instruments

Masoud Parirokh DMD, MS¹, Zeynab Kazemizadeh DMD, MS², Arash Shahravan DMD, MS³, Ghasem Sahranavard DMD, MS³, Ali Akbar Haghdooost MD, PhD⁴

Abstract

BACKGROUND AND AIM: This study was carried out to compare three different ultrasonic cleaner devices in the cleaning process of endodontic instruments by scanning electron microscope (SEM).

METHODS: In this study, 120 unused brand new hand and rotary instruments were examined after removing from the sealed package. The instruments were randomly divided into six groups of 20 rotary or hand files each and observed by SEM before ultra-sonication. Then, every pair of hand and rotary instruments was cleaned using one of the ultrasonic cleaner brands. Again the instruments were examined by SEM and assessed in three different parts, tip, middle and distance 16 (D16). SEM data were analyzed by Kurskal–Wallis and Mann–Whitney tests.

RESULTS: The tip of the endodontic instruments was the most contaminated area before ultrasonic cleaning. Statistical analysis showed that all of the tested ultrasonic devices were significantly effective machines for debris removal from endodontic instruments. The hand and rotary instruments cleaned by one of the devices were significantly cleaner than the others (P < 0.050). There was a significant difference in cleaning of the separate parts of the instruments during ultra-sonication among ultrasonic cleaners. The tips of the instruments were significantly cleaner than the D16 parts (P < 0.050).

CONCLUSION: Various ultrasonic devices have different ability for cleaning of endodontic instruments.

KEYWORDS: Endodontic Instruments, Scanning Electron Microscope, Ultrasonic Cleaner

Endodontic instruments have always been a matter of concern among clinicians because of special surface topography and the potential of transmitting antigens and prions such as various Creutzfeldt-Jakob disease from one patient to another.¹² Researchers have found that both types of stainless steel and nickel-titanium (Ni-Ti) files even when withdrawn from sealed boxes have had metallic and nonmetallic debris and even defect on their surface.³⁹ Contamination on endodontic files possibly happens during either manufacturing and packaging process or cleaning procedure itself.¹⁰ As the endodontic instruments may come in contact with periapical tissue during root canal therapy, it has been emphasized that the instruments should be sterilized before use.¹¹ Many clinicians use endodontic files more than one time and therefore lack of complete cleaning of the endodontic instruments after
first usage may exchange debris, blood and antigens through instruments from one patient to another.1 These materials are potentially infective and may produce serious problems for either patient or the dentist.12-14 Even unused instruments have a lot of organic and inorganic debris that may prevent complete sterilization before clinical use.8

Many methods were used for endodontic instrument cleaning such as hand scrubbing, ultrasonication, and washer disinfectant.8,15-17 Previous studies on the effect of different methods and devices for cleaning of the endodontic instruments made conflicting results.4-7,18 Previous research studies show that even after ultrasonic cleaning and sterilization with dry heat or autoclave some residual debris may remain on endodontic instruments.5,8

However, two other studies showed that ultrasonic cleaning is an efficient method for the removal of metallic particles from the surface of endodontic instruments.4,18 The difference between ultrasonic brands was addressed as one of the factors that may influence on removing debris from endodontic instruments after the ultrasonication.7

Several brands of ultrasonic cleaners have been introduced to the market with different frequencies and volume capacity, however, it has not been shown that the efficacy of those brands on endodontic instruments. Therefore, the purpose of this study was to determine the amount of debris on endodontic instruments before and after cleaning with different ultrasonic cleaners.

Methods

One hundred and twenty new, unused rotary and hand endodontic instruments were examined. The instruments consist of: 60 Ni-Ti rotary endodontic instruments tapering 2\% size 20 of Flex master rotary instruments (VDW-Germany), and 60 K-file size 30 of stainless steel endodontic instruments (Mani-Japan).

The instruments were removed from their original packages and grasped by their handle with a needle holder to avoid contamination. A mark was made on the instruments shaft in order to be sure about making the same image under scanning electron microscope (SEM) after each step. Then in the first step all of the instruments were directly observed using an SEM (XL30 Philips-The Netherlands) at 1 kV and × 150 magnification. Instruments were observed at the tip, the middle, and the distance 16 (D16) (16 mm distance from the tip) of each file and an image from each part were taken. After that, each type of the hand and rotary instruments was randomly divided into three equal groups of 20 instruments. In the next step, each pair of rotary and hand instruments were randomly placed in a container and cleaned in one of the ultrasonic cleaners (Table 1). Each ultrasonic cleaner contained a disinfectant liquid (BIB Fort, Asia Chimi Teb Co., Tehran, Iran), which was prepared according to the manufacturer instructions. The liquid contains: tert. Alkylamine, trialkylxylo ammonium propionate, emulsifying agents, deionized water, tensides, and auxiliary agents. The ultrasonic devices were activated for 15 min. Afterwards, the instruments were rinsed by running tap water for 20 s and then their container was kept in an airtight coverage until the second evaluation by SEM. Evaluation of the amount of debris on endodontic instruments was assessed based on a modification of Filho et al.4 and Zmener and Spielberg18 studies by three endodontists. For each instrument if the score given by the examiners was not similar then they discuss it to each other until a unique opinion had been made. The following criteria were used for scoring residual debris on instruments:

- 0- No debris
- 1- A few debris could be detected
- 2- Moderate amount of debris could be detected
- 3- A lot of debris could be detected
- 4- A huge amount of debris could be detected.
Since the amount of contamination was measured using an ordinal scale, we used non-parametric tests of Kurskal–Wallis and Mann–Whitney to compare the three parts of rotary and hand instruments cleaned by the three bands of ultrasonic cleaners.

Results

The results of this study showed that all instruments before ultrasonic cleaning had contamination on their surfaces. Data analysis showed that the tip of the instruments was the most contaminated area in comparison with middle and D16 areas ($P < 0.001$).

A. comparison of debris removal of endodontic instruments after ultrasonic cleaning

All the instruments showed significant cleaning after ultra-sonication ($P < 0.001$) (Figure 1, A and B), however, the D16 area showed the least amount of cleaning and was not significantly cleaned in comparison with their images before ultra-sonication ($P > 0.050$).

![Figure 1. Hand instruments, (A) before cleaning and (B) after ultrasonic cleaning (× 150)](image)

B. comparison of debris removal between hand and rotary endodontic instruments after ultrasonic cleaning

The middle area of hand instruments was significantly cleaned in comparison with the middle area of rotary instruments ($P < 0.001$).

There was no significant difference between removing debris from hand and rotary instruments at the tip and D16 areas ($P > 0.050$).

C. Comparison of debris removal after ultrasonic cleaning with different brands of ultrasonic cleaner

After ultra-sonication by device C, all examined area of the rotary and only the tip of the hand instruments were significantly cleaner in comparison with device B ($P = 0.030, P = 0.006$, respectively). No significant difference was found in cleaning efficacy between devices A and C, as well as A and B (Figures 2 and 3).

![Figure 2. The mean difference of decontamination of the hand instruments after ultra-sonication in different ultrasonic devices A-C: The ultrasonic devices; TIP: Tip of the instruments; MID: Middle of the instruments; D16: 16 mm distance from the tip of the instruments](image)

An interesting finding was the presence of more debris in D16 area following ultra-sonication when the instruments were placed in device A and B (Figures 4, A and B). A few instruments that were placed in device C show the same contamination at the D16 area following ultra-sonication.

No significant difference in cleaning was found in all examined parts of the rotary and hand instruments that were cleaned in device C, whereas in device A and B the middle part of rotary instruments was significantly cleaner than the tip and the D16 parts of the instruments ($P = 0.001$ and $P = 0.002$, respectively).
Discussion

The present study showed that various ultrasonic cleaners have had different efficacy on separate parts of the endodontic instruments. Although all of the instruments in this study were new and freshly unpacked both hand and rotary instruments showed debris on their surfaces. It was in accordance with previous research studies that report the presence of debris even on new unused instruments.\(^3\)\(^\text{-}\)\(^8\),\(^10\)\(^\text{-}\)\(^12\),\(^19\),\(^20\)

Several investigations have reported conflicting results after ultrasonic cleaning of endodontic instruments.\(^4\)\(^\text{-}\)\(^8\),\(^12\),\(^18\)\(^\text{-}\)\(^23\) Many of these studies employed light microscope\(^21\)\(^\text{-}\)\(^23\) whereas others use SEM for assessment contamination.\(^4\),\(^5\),\(^8\). However, it is difficult to directly compare these studies because they used different operating conditions under the SEM. Stowe et al.\(^24\) in their study showed that using low accelerating voltage (LAV < 3 kV) and higher magnification are needed to see debris reliably. In this study, LAV was used (1 kV) to obtain more convenient results.

In the present study, the ultrasonic devices were activated for 15 min. Employing that period of time was based on a study that conducted by Parashos et al.\(^6\) They believe that employing longer time for ultrasonic cleaning may reposition debris on endodontic instruments Van Eldik et al.\(^7\) performed a study on debris removal from endodontic instruments when the endodontic instruments either loosely placed in an ultrasonic cleaner or in a perforated container. The results of their study have shown that placing the instruments in a baker during ultra-sonication is significantly improved the instruments cleaning in contrast with a previously published study that recommend the use of a perforated container for placing the endodontic instruments during ultrasonication.\(^6\) Van Eldik et al.\(^7\) attributed that difference to the several variations in the cleaning procedures such as whether the files were placed in a container or differing types of ultrasonic cleaners. The results of the present study showed that different ultrasonic cleaners might have different ability on endodontic instrument cleaning, and that might be another reason for the difference among previously performed investigations on cleaning endodontic instruments. Although Elmsallati et al.\(^22\) in a recently published study claimed that the flute design of the endodontic instruments is the determining factor for remaining debris after ultra-sonication.

Parashos et al. reported that employing a container for placing endodontic file in it during ultra-sonication produce cleaner file in comparison with the files that left in a baker.\(^6\) They stated that when ultrasonic device turning off after the device activation
the floating debris inside the ultrasonic liquid baker may recontaminate the instruments that left in the baker without a supporting basket. For that reason, in this study the instruments were placed in a container during ultra-sonication.

Recently, single use of endodontic instruments have been recommended based on concerns regarding transmitting infectious materials from one patient to another; therefore, in the present study the cleaning of instruments were evaluated without using them for canal preparation.

Due to the magnification used in the present study, it was not possible to visualize all the cutting element of the file in one view. Therefore, the tip, the middle, and the D16 area were selected to evaluate separate areas of each file. The results of the present study showed that different parts of each file were variously cleaned in an ultrasonic cleaner, and it is very important to select different parts of each file for more precise evaluation.

The results of this study showed that the tip area of both hand and rotary instruments are the most contaminated area in comparison with the middle and the D16 area. The possibility of direct contact of the tip of an endodontic file with periapical tissues is much more than other area of the file. Therefore, it seems that the tip of the endodontic instrument is the most critical area for evaluating the efficacy of a cleaning procedure and needs more attention.

The results of Aasim et al. study showed the superior cleanliness of the tip in comparison with the shaft of the endodontic instruments. In this study, only the hand and the rotary files that were placed in one ultrasonic cleaner (device C) show no significant difference between instrument cleaning at the tip, the middle, and the D16 areas. However, significant difference between cleaning of the middle and the other parts of the files in both other devices (A and B) showed that all ultrasonic devices have not the same efficacy for debris removal from endodontic files at different parts of the instruments.

Review of the literature shows that nowadays, rotary instruments are well accepted and more popular because of their exceptional ability to shape curved root canals. More contamination of the D16 area is a matter of concern. Contamination at the superior parts of the instruments after ultrasonic cleaning may be due to placing the instruments inside a container. A recent study shows that the tip of the endodontic instruments after employing ultrasonic cleaning is cleaner than the shaft of the instruments. The authors hypothesize that the superior cleanliness of the tip of the endodontic instruments may be due to the cavitation effect of an ultrasonic device on the instrument’s tip. Therefore, placing the instruments inside a container may prevent or limit cavitation on the shaft of the instruments.

The different cleaning effect of various ultrasonic cleaners in the present study may be due to different frequencies of the employing ultrasonic devices that used in the present study. Device C has 53 KHz, however, the frequency of the both other ultrasonic cleaners are 50 Hz. Therefore, the various ultrasonic frequencies may explain their different cleaning ability on endodontic instruments. Jatzwauk et al. emphasized that the influence of intensity and frequency of sonication and the effects of cavitation on endodontic instruments is not clear and should be clarified.

The present study did not completely followed clinical protocol of instrument sterilization in terms of presoaking because this step is recommended for residual proteins and nonorganic debris that may remain on the instruments following clinical use. A previous investigation have shown that debris on unused brand new instruments are mostly organic ones and, therefore, presoaking could not help instrument cleaning when brand new ones are used. The reason of using size 20 for rotary and 30 for
Cleaning ability of various ultrasonic cleaners

Parirokh et al.

...hand instruments was based on a preliminary study during our previous investigation⁸ that showed this size had more debris when removed from the manufacturer package. However, in the future using different size of instruments and use various types of container may improve information in those regards.

Conclusion

The result of this study showed that various ultrasonic devices have different ability for cleaning hand and rotary endodontic instruments. More research studies should be performed to clear the effect of frequency on ultrasonic cleaner efficacy.

Conflict of Interests

Authors have no conflict of interest.

Acknowledgments

This study was supported by The Research Committee of Kerman University of Medical Sciences.

References

Clinical characteristics of peripheral ossifying fibroma: A series of 20 cases

Mohammad Reza Zarei DDS, MD\(^1\), Nader Navabi DDS, MD\(^2\), Goli Chamani DDS, MD\(^1\), Sepideh Pour-Monajemzadeh DDS\(^3\)

Abstract

BACKGROUND AND AIM: Peripheral ossifying fibroma (POF) is a reactive chronic localized hyperplastic gingival lesion. The present case-series was undertaken to determine the clinical variations in a series of different cases of oral POF.

METHODS: Demographic and clinical data including age, gender, location, color, clinical diagnosis, size, consistency and radiographic view of the lesions were studied among clinical records at school of dentistry in Kerman, Iran, from 1998 to 2012.

RESULTS: A total of 20 POF cases was subjected to clinical analyses, in equal numbers of men and women. The total frequency of POF was 2.5%, and 11 cases (55%) had occurred in the maxilla. POF showed a greater frequency of pink color (60%), anterior location (55%), firm consistency (85%) and a size of 1-1.5 cm (60%). Bone resorption and calcification were found in 35% and 25% of cases, respectively.

CONCLUSION: In comparison with previous studies, despite investigation of similar clinical features of POF in the present study, findings also showed that characteristics such as age, gender and location cannot help in the differential diagnosis of POF from pyogenic granuloma.

KEYWORDS: Peripheral Ossifying Fibroma, Fibroma, Gingiva, Oral Cavity

Peripheral ossifying fibroma (POF) is a relatively uncommon fibrous lesion of the gingiva. The lesion have named differently by different authors, including fibrous epulis, calcifying fibroblastic granuloma or peripheral fibroma with calcification.\(^1\) The etiology of the lesion, which is considered a non-neoplastic lesion of the gingival tissue, is attributed to irritation and trauma. Despite the fact that this lesion is thought to be relatively common, it accounts for less than 1% of all the oral biopsies.\(^2,3\)

POF is widely believed to originate from underneath the periodontium from the inflammatory hyperplasia of the periodontal ligament and due to locally irritating factors, including subgingival accumulation of plaque and calculi, dental appliances, and tooth restorations which have low quality.\(^1,3\) However, some investigators believe that hormones might have a role in the lesion because prepubertal patients are rarely affected, and the disease incidence decreases significantly after 30 years of age.\(^2\)

POF appears as an exophytic lesion on the gingiva and enlarges slowly, most often measuring < 2 cm; however, some lesions might be larger. It occurs in the gingival interdental papilla, with a sessile or pedunculated base; the color might be similar to gingiva or somewhat reddish and the lesion surface might exhibit ulcerations.\(^4,6\) In the majority of the studies, the anterior
maxillary involvement was more than mandible.6 The lesion mainly affects women and has a predilection for the second decade of life.7 Treatment consists of surgical excision and laboratory examination to confirm the diagnosis.8

Review of the literature revealed that mostly of published articles about POF were reports of one case and only five studies in which more than one case have been reported (Table 1).1-27

Table 1. Published articles about reporting POF1-27

<table>
<thead>
<tr>
<th>Authors</th>
<th>Number of case(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moon et al.1</td>
<td>1</td>
</tr>
<tr>
<td>Dahiya et al.2</td>
<td>1</td>
</tr>
<tr>
<td>Passos et al.3</td>
<td>1</td>
</tr>
<tr>
<td>Chaudhari and Umarji4</td>
<td>1</td>
</tr>
<tr>
<td>Silva et al.5</td>
<td>1</td>
</tr>
<tr>
<td>Prasad et al.6</td>
<td>1</td>
</tr>
<tr>
<td>Kumar et al.7</td>
<td>1</td>
</tr>
<tr>
<td>Walters et al.8</td>
<td>3</td>
</tr>
<tr>
<td>Pradeep et al.9</td>
<td>1</td>
</tr>
<tr>
<td>Nazareth et al.10</td>
<td>1</td>
</tr>
<tr>
<td>Sacks et al.11</td>
<td>1</td>
</tr>
<tr>
<td>Mishra et al.12</td>
<td>1</td>
</tr>
<tr>
<td>Luvizuto et al.13</td>
<td>1</td>
</tr>
<tr>
<td>Trasad et al.14</td>
<td>1</td>
</tr>
<tr>
<td>Poonacha et al.15</td>
<td>1</td>
</tr>
<tr>
<td>Das and Azher16</td>
<td>1</td>
</tr>
<tr>
<td>Yadav and Gulati17</td>
<td>1</td>
</tr>
<tr>
<td>Farquhar et al.18</td>
<td>1</td>
</tr>
<tr>
<td>Garcia de marcos et al.19</td>
<td>4</td>
</tr>
<tr>
<td>Shetty et al.20</td>
<td>22</td>
</tr>
<tr>
<td>Chaturvedy et al.21</td>
<td>1</td>
</tr>
<tr>
<td>Barot et al.22</td>
<td>1</td>
</tr>
<tr>
<td>Khan et al.23</td>
<td>1</td>
</tr>
<tr>
<td>Childers et al.24</td>
<td>1</td>
</tr>
<tr>
<td>Rallan et al.25</td>
<td>1</td>
</tr>
<tr>
<td>Verma et al.26</td>
<td>4</td>
</tr>
<tr>
<td>Cuisia and Brannon27</td>
<td>134</td>
</tr>
</tbody>
</table>

POF: Peripheral ossifying fibroma

In study of Cuisia and Brannon,27 a clinical evaluation was made for pediatric cases, and Garcia De Marcos et al.19 demonstrated immunohistochemical features of four cases of POF, however, it seems that in their study POF was analyzed only from histological point of view. In Iran, four research works carried out by Zarei et al.,28 Ala et al.,29 Amirchaghmaghi et al.30 and Naderi et al.31 reported the frequencies of various types of reactive hyperplastic lesions of the oral cavity and none of them focused on POF in their researches.

The clinical behavior of POF is somehow varying from the other oral reactive hyperplastic lesions, for example its high percentage of recurrence after treatment and differential diagnosis of a serious malignancy which is called osteogenic sarcoma from POF must be considered. Moreover in the cases of delayed correct diagnosis, adjacent tooth loss and alveolar bone resorption would be the consequences. Therefore, dentists should be informed about POF, which clinically poses a dilemma for the diagnosis among reactive gingival hyperplastic lesions, especially pyogenic granuloma.3,32 Increasing knowledge about the specialized epidemiologic data would be a practical tool for better diagnosis, and this study is the first case series for illustration of clinical features of POF in Iran.

Methods

The present study is a case series. The materials included all the biopsy specimen records of the department of oral medicine, school of dentistry, Kerman University of medical sciences, Kerman, Iran, between 1998 and 2012. The records were reviewed for demographic data and clinical data including sex, age, patient chief complaints, the type, size, location, duration, diagnosis, and histological characteristics of the lesions. To minimize recurrence, excisional biopsy down to the bone had been carried out for all the lesions; hence, the medical charts of patients with confirmed histopathological diagnosis of POF were selected. The paraffin blocks of all the 20 cases were separately analyzed by two oral pathologists again for re-confirmation of the initial diagnoses. The clinical and histopathological diagnoses of POF were made based on the Modified World Health Organization classification.26

At the end, the session was held between
the two pathologists and those cases, which they had a disagreement on diagnosis were determined. Then an agreement was reached regarding these cases after discussion and consultation with another expert pathologist. We also selected the blocks of cases with the final diagnosis of pyogenic granuloma and giant cell granuloma from the mentioned academic archive and these blocks also were reviewed by the two pathologists because of differential diagnosis with POF. Radiologic evaluation for the presence of calcification within the lesions was also confirmed by one oral and maxillofacial radiologist. Data were evaluated by means of descriptive statistics.

Patient’s data were all kept confidential.

Results

A total of 20 conclusive cases of POF was diagnosed in patients during the research period out of 800 total lesions, clinical and histopathologically diagnosed. The total frequency of POF in this study was 2.5%. Of all the 20 cases of POF studied, half of the cases had occurred in females and half in males. The age range of the patients diagnosed with POF was 11-49 years (Table 2); the mean age was 28.85 years with a standard deviation of ± 12.874. Of all the patients with POF, the prevalence of POF was similar between the patients under 30 and over 30 years of age; 11 cases had occurred in the maxilla and 11 cases had appeared in the region anterior to canines. The surface of 12 lesions (60%) was smooth, and the remainders had ulcerated surfaces. According to the documented histories, in 13 cases (65%) bleeding occurred during meal or when they brushed their teeth. Majority of lesions (80%) had a sessile bases, 10% were polypoid and justly 2 lesions presented as nodules. Radiographic assessment revealed 7 views of subjacent alveolar bone resorption and also 5 views of calcification. On the whole, 11 cases had had the lesions for more than 1 year. A tendency to bleed during clinical examination was seen only in 4 cases, and a history of rapid growth was reported from only 1 patient.

All the cases were followed up for 2 years after the surgical treatment; hence three cases reported that their lesion had recurred in this period. Almost all the patients were systemically healthy and only three patients were medically compromised (one ischemic heart disease case, one diabetes mellitus case and one asthma case).

In one of our cases, 29-year-old male, intraoral examination showed a sessile, bony hard, non-tender, pinkish lump in gingiva, extended from the second permanent premolar to the second permanent mandibular left molar, occupied entire left buccal vestibule. The lesion was 4 cm × 3 cm (Figure 1). Occlusal radiographic view of the involved region showed calcification within the soft tissue mass (Figure 2). Histological

| Table 2. The patient demographics and statistical data obtained in this study |
|------------------------------|----------|---------|
| **Variable** | **Category** | **n (%)** |
| Age (year) | < 30 | 10 (50) |
| | ≥ 30 | 10 (50) |
| Gender | Male | 10 (50) |
| | Female | 10 (50) |
| Jaw | Maxilla | 11 (55) |
| | Mandible | 9 (45) |
| Location | Anterior | 11 (55) |
| | Posterior | 9 (45) |
| Color | Pink | 12 (60) |
| | Red | 8 (40) |
| | POF | 10 (50) |
| | PG | 8 (40) |
| Clinical diagnosis | Irritation fibroma | 1 (5) |
| | GCG | 1 (5) |
| Adjacent teeth | Mobility | 9 (45) |
| | Diastema | 7 (35) |
| | Both | 2 (10) |
| | < 1 | 4 (20) |
| | 1-1.5 | 12 (60) |
| | > 1.5 | 4 (20) |
| | Firm | 17 (85) |
| Consistency | Bony hard | 2 (10) |
| | Rubbery | 1 (5) |
| Radiographic view | Bone resorption | 7 (35) |
| | Calcification | 5 (25) |
| | Both | 3 (15) |

POF: Peripheral ossifying fibroma; PG: Pyogenic granuloma; GCG: Giant cell granuloma
picture of the lesions revealed the islands of odontogenic epithelium and focal areas of calcified tissue within the area of highly cellular fibrous connective tissue showing collagen fibers and proliferating plump fibroblasts. Subepithelial connective tissue was infiltrated with chronic inflammatory cells (Figure 3).

Discussion

The most frequent lesions in the oral cavity are exophytic lesions of the gingiva; however, almost all the documented POF cases in the literature are case reports.\(^{1,18,32}\) Shetty et al., in a review of 22 cases reported a number of clinical and pathological manifestations of POF.\(^{20}\) Therefore, it seems that the present study is the second review in the literature with considerable sample size for clinical analysis of POF.

The reported rate of POF among total lesions of the oral mucosa (2.5%) is higher in the present study than that reported before (< 1%).\(^{2,3}\) This difference may be due to the some etiologic factors especially poor oral hygiene. In the present investigation, significant number of POF lesions exhibited long evolution periods and lasted much longer than similar lesions, such as pyogenic granuloma and peripheral giant cell granuloma, which is consistent with the report made by Salum et al.\(^{33}\)

A tendency to bleed and bony hard consistency, which are all important clinical keys to make a distinction between pyogenic granuloma and POF, were seen in a small number of cases in the present study. Due to lack of distinguishing clinical manifestations in the group of cases, it is not possible to distinguish between pyogenic granuloma and POF peculiarly based on clinical symptoms. Similarly, Pradeep et al. believe that POF might be easily confused with a pyogenic granuloma and calcification, which is considered its most important histopathologic feature, might finally help make a distinction between it and other fibrous lesions.\(^{9}\)

We described diagnostic radiographic views of POF in almost 12 of our cases, which is consistent with the report made by Shetty et al. In other words, those researchers reported that almost 90% of the lesions did not exhibit any radiographic manifestations.\(^{20}\) The technique used was periapical for all the cases; however, several researchers have
reported CT and MRI findings of very large POF lesions.\(^1,4\)

The size of the majority of cases in the present study was 1-1.5 cm, which was remarkable, consistent with the results of a study carried out by Shetty et al.;\(^20\) however, in the reported case of Nazareth et al. the size was significantly larger than the average lesion.\(^10\) Sacks et al. described a “gigantiform” POF measuring 10.5 cm in an edentulous patient, resulting in gross facial asymmetry and occupying most of the oral cavity.\(^11\)

In the present study, 7 cases out of 20 showed the dislocation of one or two adjacent teeth. Mishra et al. reported a POF in a 45-year-old female patient, with displacement of almost all the mandibular anterior teeth (centrals, lateral incisors, and canines). This pattern of adjacent teeth displacement reported by Mishra et al. is very rare in POF.\(^12\) All the patients in the present study had been treated by traditional excisional biopsy; however, Luvizuto et al. reported a clinical case in which a POF lesion underwent excisional biopsy, with a subepithelial connective tissue graft placed to satisfactorily repair the defect after biopsy.\(^13\)

The post-operative recurrence rate for POF was 15% in this study. All these recurrences had happened in a mean period of 1 year after first surgery while Trasad et al. reported one POF that exhibited recurrence 2 months after the surgical treatment.\(^14\) A similar recurrence rate of 16–20% has been reported in the other studies, which is believed to be high for a benign reactive lesion. Different reasons have been reported for recurrence, including: (a) partial surgical removal of the nodule; (b) persistence of local irritating factors; and (c) lack of adequate access to POF lesions in interdental areas. Deep excision is advocated because of the high recurrence rate.\(^9,10\)

In the present study, POF showed no gender and age predilection and POF was distributed with minor differences between the two jaws. These results differ from those of other studies; for example Shetty et al. reported a higher incidence in females (73%), and the majority of lesions had occurred in the second and third decades of life and in the maxillary anterior region.\(^20\)

Conclusion

Further studies are necessary to determine whether the discrepancies above can be explained by geographic factors and/or different sample sizes in different studies.

Conflict of Interests

Authors have no conflict of interest.

Acknowledgments

The authors wish to thank patients for their participation in this research.

References
