Causes and patterns of permanent tooth loss among 9-15 years old children in the Central Anatolia Region

Merve Candan DDS, PhD1, Esra Mavi DDS, PhD2, Burak Buldur DDS, PhD3

Abstract

BACKGROUND AND AIM: The aim of this study was to investigate the causes and patterns of permanent tooth extraction among a subpopulation of 9-15-year-old Turkish children.

METHODS: This study employed a retrospective design and consisted of a total of 198 children aged 9 to 15 years attending a dental faculty between January and December 2019. The clinical and radiographic data were obtained from the medical and dental forms from the faculty database. The inclusion criteria included having at least one permanent tooth loss. Age, gender, the Decayed, Missing, and Filled Teeth (DMFT) scores, type and localization of missing permanent tooth/teeth, and reasons for the loss were evaluated. The data were analyzed using descriptive statistics and chi-square test at 0.05 significance level.

RESULTS: A total of 198 patients with 309 extracted teeth were evaluated. The mean age of the subjects was 12.95 ± 1.58 years and mean DMFT score was 6.25 ± 3.52. Extractions for orthodontic needs (41.7%) and caries-related extractions (32.4%) were the most common causes of tooth loss followed by unsuccessful dental treatments in 13.9% of cases. While the highest DMFT scores were found in dental caries and orthodontic needs groups, the less scores were found in the "others" group. The most frequently extracted teeth due to caries were the first molar teeth and the first mandibular molars were mostly extracted compared to maxillary first molars. The most frequently extracted teeth due to orthodontic needs and dental caries were seen in girls.

CONCLUSION: Orthodontic needs and dental caries were found to be the main causative factors for permanent tooth extractions.

KEYWORDS: Child; Dental Caries; Tooth; Tooth Loss

The present study had three research questions: i) What are the dynamics of permanent tooth loss over time? ii) Is permanent tooth loss associated with gender or Decayed, Missing, and Filled Teeth (DMFT) scores? iii) Is there a relationship between the reason for extraction and the type or localization of the permanent teeth lost? This study aimed to evaluate the causes of permanent tooth extraction, their relationship with various variables such as age, gender, and DMFT score, and the reasons and prevalence for permanent tooth extraction among 9-15-year-old children in a Turkish subpopulation.

### Methods

The study followed the ethical standards specified in the 1975 Declaration of Helsinki (revised in 2000) and its subsequent amendments. Written informed consent was obtained from participants.

The study group consisted of 9 to 15-year-old patients who had at least one permanent tooth extraction and applied to School of Dentistry, Cumhuriyet University, Sivas, Turkey, between January 2019 and December 2019. Patients with any congenital and/or systemic diseases were excluded from the study. Radiographical and clinical records of patients were evaluated retrospectively. The data were gathered under the following categories: gender, age, DMFT scores, and reasons for extraction. The reasons for tooth extractions were listed in the following subheadings: dental caries, unsuccessful dental treatment, dental trauma, periodontal problems, eruption problems, orthodontic needs, and other reasons (patient's collaboration and patient and parental attitude towards dental treatment). Data were evaluated by two calibrated and trained observers and inter-observer agreement was found to be good (Cronbach's alpha = 0.9125).

Statistical analyses were performed using SPSS software (version 22, IBM Corporation, Armonk, NY, USA). Descriptive analyses, namely including frequencies and percentage, were used to summarize the demographic characteristics. The distribution of extracted tooth according to gender, dentition type, and tooth type was analyzed by the chi-square test. The significance level was 0.05.

### Results

Of the patients, 57.9% (n = 179) were girls and 42.1% (n = 130) were boys. The average age of the subjects was 12.95 ± 1.58 (minimum = 9.0, maximum = 14.9). Mean DMFT score of the subjects was 6.25 ± 3.52 (minimum = 1, maximum = 18).

Figure 1 presents the distribution of extracted teeth according to dentition type. With regard to dentition type, tooth loss was mostly observed in permanent dentition due to dental caries, orthodontic treatment, and eruption problems. While permanent tooth loss due to dental caries was mostly seen in boys, orthodontic needs were mostly observed in girls. Whereas first permanent molar teeth were mostly extracted due to dental caries, first permanent premolar teeth were mostly extracted for orthodontic reasons. Incisors were the most subjected teeth to dental trauma and eruption problems.

Figure 2 presents the distribution of extracted teeth according to localization in the jaw. Tooth loss due to dental caries and unsuccessful treatment was mostly seen in mandible and loss due to orthodontic needs were mostly seen in maxilla. Tooth loss due to dental trauma and eruption problems was mostly observed in maxilla. Table 1 presents the descriptive statistics of tooth extraction reasons by age. The highest mean age was found in orthodontic needs group.
Table 1. Descriptive statistics of tooth extraction reasons by age

<table>
<thead>
<tr>
<th>Reason</th>
<th>n (%)</th>
<th>Mean ± SD</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dental caries</td>
<td>100 (32.36)</td>
<td>12.30 ± 1.54</td>
<td>11.99-12.61</td>
</tr>
<tr>
<td>Unsuccessful treatment</td>
<td>43 (13.92)</td>
<td>12.29 ± 1.64</td>
<td>11.79-12.80</td>
</tr>
<tr>
<td>Dental trauma</td>
<td>3 (0.97)</td>
<td>13.33 ± 0.12</td>
<td>13.05-13.62</td>
</tr>
<tr>
<td>Orthodontic needs</td>
<td>129 (41.75)</td>
<td>13.94 ± 0.98</td>
<td>13.79-14.08</td>
</tr>
<tr>
<td>Periodontal problems</td>
<td>2 (0.65)</td>
<td>11.50 ± 1.32</td>
<td>2.61-20.39</td>
</tr>
<tr>
<td>Eruption problems</td>
<td>14 (4.53)</td>
<td>13.19 ± 0.17</td>
<td>12.42-13.95</td>
</tr>
<tr>
<td>Others</td>
<td>18 (5.83)</td>
<td>11.03 ± 1.58</td>
<td>10.16-11.96</td>
</tr>
</tbody>
</table>

SD: Standard deviation; CI: Confidence interval

Figure 2. Numbers of extracted teeth according to localization in the jaw

Table 2. Descriptive statistics and comparison of reasons for tooth extraction by Decayed, Missing, and Filled Teeth (DMFT) scores

<table>
<thead>
<tr>
<th>Reason</th>
<th>n (%)</th>
<th>Mean ± SD</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dental caries</td>
<td>100 (32.36)</td>
<td>7.23 ± 3.95</td>
<td>1.00</td>
<td>17.00</td>
</tr>
<tr>
<td>Unsuccessful treatment</td>
<td>43 (13.92)</td>
<td>5.14 ± 2.67</td>
<td>1.00</td>
<td>11.00</td>
</tr>
<tr>
<td>Dental trauma</td>
<td>3 (0.97)</td>
<td>5.33 ± 1.83</td>
<td>2.00</td>
<td>7.00</td>
</tr>
<tr>
<td>Orthodontic needs</td>
<td>129 (41.75)</td>
<td>6.50 ± 5.89</td>
<td>0</td>
<td>18.00</td>
</tr>
<tr>
<td>Periodontal problems</td>
<td>2 (0.65)</td>
<td>6.00 ± 19.41</td>
<td>4.00</td>
<td>8.00</td>
</tr>
<tr>
<td>Eruption problems</td>
<td>14 (4.53)</td>
<td>4.14 ± 1.75</td>
<td>2.00</td>
<td>9.00</td>
</tr>
<tr>
<td>Others</td>
<td>18 (5.83)</td>
<td>3.61 ± 1.34</td>
<td>1.00</td>
<td>7.00</td>
</tr>
</tbody>
</table>

SD: Standard deviation

Figure 4 presents the distribution of extracted teeth according to sex. The most frequently extracted teeth due to orthodontic needs and dental caries were seen in girls.
Permanent teeth extraction in Turkish children

Candan et al.

Figure 4. Numbers of extracted teeth according to sex

Extractions for orthodontic needs (41.7%) and caries-related extractions (32.4%) were the most common causes of tooth loss followed by unsuccessful dental treatments in 13.9% of cases.

Discussion

Factors including dental pain, parental attitudes, child’s ability to tolerate dental treatment under local anesthesia, unsuccessful root canal treatments, periodontal and eruption problems, apical pathologies, and orthodontic treatments are indicative for decision of extracting or treating permanent teeth.\(^7\),\(^24\),\(^25\) The findings revealed that dental caries and orthodontic needs were the main reasons for permanent tooth extractions.

Tooth extraction is a commonly used treatment method in orthodontic patients.\(^26\)–\(^28\) The decision of tooth extraction for orthodontic treatment is decided for reasons such as oral hygiene, carious or impacted teeth, periodontal disease, supernumerary teeth, and hypodontics or orthognathic surgery. Planning tooth extraction for orthodontic treatment is one of the important factors for functional and aesthetic orthodontic results and treatment’s long-term stability.\(^29\) Orthodontic need was the main reason for tooth extraction in 41.7% of cases. In addition, girls had slightly more extracted teeth than boys, and the most extracted tooth was the first premolar tooth. The frequency of tooth extraction related to orthodontic needs was more common in girls; thus, it is important to demonstrate the gender-related difference of orthodontic treatment-related tooth loss. This finding of the present study may be due to the having higher aesthetic concerns of girls compared to boys.\(^30\)

The permanent first molars have higher risk of dental caries in the years following their eruption.\(^31\) The majority of the teeth extracted due to dental caries were permanent first molars. These results are compatible with a previous study reporting that caries rate of permanent first molars is quite high in 18-year-old individuals and this tooth has an important effect in increasing overall DMFT values. Demirbuga et al. reported the ratio of caries, filled, and extracted teeth to total teeth as 15.8% among a subgroup of 13-16-year old patients.\(^32\) The first permanent molars are more subject to dental caries and early extraction due to their early eruption. Meneghel et al. reported that higher food retention occurred on the surface of mandibular teeth than maxillary teeth.\(^33\) The maxillary permanent first molar teeth have less caries and/or fillings than the mandibular permanent first molar teeth. This may be due to cleaning effect of the salivary gland duct opening to the buccal surface of these teeth.\(^34\) Mandibular teeth were reported to be less carious and/or filled than maxillary teeth. However, this situation is different for permanent first molars and it has been reported that more caries and/or fillings are observed in the mandibular permanent first molar teeth. This may be due to cleaning effect of the salivary gland duct opening to the buccal surface of these teeth.\(^34\) Mandibular teeth were reported to be less carious and/or filled than maxillary teeth. However, this situation is different for permanent first molars and it has been reported that more caries and/or fillings are observed in the mandibular permanent first molar teeth. In accordance with literature, present study showed that the most frequently extracted teeth due to caries were the first molar teeth, and the mandibular first molars were more extracted than maxillary first molars.

Permanent second molar teeth should be critically evaluated before permanent first molar teeth extraction since it may be possible to close the space spontaneously after tooth extraction and to properly align the permanent teeth.\(^35\),\(^36\) The extraction of permanent first molars does not cause major problems in maxilla but the effect of this loss is significant in mandible. Occlusion also depends on the extraction age, and the best results occur at an early age (8-10 years).
The average age for extraction of the permanent first molar teeth was found to be 12.01 years, which is beyond the commonly recommended extraction age (8-10 years).

In the present study, causes such as the severity of dental pain, the child's dental anxiety and ability to tolerate long dental treatment under local anesthesia, parental attitudes towards dental orthodontic treatment, and rejection of treatment were gathered under “other reasons” category. These are among the reasons for permanent tooth extraction with a rate of 5.8% in this study. It is clear that in order to eliminate the above causes categorized in others group, which causes the dental treatment option to disappear, the motivation of the child should be increased and informative education should be provided for children and their parents.

This study has several limitations. First, the study sample was chosen from a single province, which may limit the generalisability of findings. Another limitation was relatively small sample size. Further studies should be performed in larger samples and different centers.

Permanent first molars caries experience especially continues to be the best predictor of future caries in children. Early permanent teeth loss due to dental caries gives us a prediction regarding the efficacy of oral health programs and common attitudes towards oral health. With aiming to develop effective policy for reducing early permanent tooth extraction, it is necessary to determine the characteristics of tooth extraction in children according to their causes. Considering that this is the first study to explore the causes of tooth loss in children living in Sivas Province, the current retrospective study can be useful in clinical dentistry and can be used as basic data on the frequency and causes of tooth extraction in other populations.

Conclusion

Within the limitations, this study revealed that orthodontic needs and dental caries were found to be the primary reasons of permanent tooth extraction in a Turkish subpopulation. Children who apply to the dentist for permanent first molar extraction tend to be older than the most appropriate age reported for space closure after extraction. Therefore, dentists can use a series of guides that specify when to direct patients for the extraction of permanent first molar teeth.

This study also emphasizes the need for comprehensive prevention programs for children at high risk of caries and the need to increase preventive treatments for the protection of permanent teeth in children. Preventive programs should be implemented to reduce tooth extraction caused by causes discussed in the study.

Conflict of Interests

Authors have no conflict of interest.

Acknowledgments

None.

References

7. Monte-Santo AS, Viana SVC, Moreira KMS, Imparato JCP, Mendes FM, Bonini GAVC. Prevalence of early loss of