Novel hydrogel with Carrageenan, Fucoidan and Titanium oxide nanoparticles for periodontal drug delivery

Document Type : Original Article

Authors

1 Senior lecturer ,Department of periodontics, Saveetha dental college and Hospital, Saveetha Institute of Medical and Technical sciences(SIMATS), Saveetha university, Chennai 600077

2 Intern, Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences[SIMATS], Saveetha University, Chennai, India

3 Senior Lecturer,Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences[SIMATS], Saveetha University, Chennai, India.

Abstract

Background: Nonsurgical periodontal therapy combined with antimicrobial agents is crucial for effective periodontal care. As local drug delivery systems, hydrogels offer significant advantages for managing periodontal disease. Carrageenan, extracted from red seaweeds, offers anti-inflammatory benefits, while fucoidan provides antioxidant, anticancer, and antiviral effects. Titanium oxide nanoparticles enhance antimicrobial activity, synergizing with these agents.
Methods: This study was an experimental in-vitro investigation. Carrageenan powder (0.8 g) and fucoidan powder (0.8 g) were dissolved in 100 mL deionized water and boiled at 65 °C for four hours. The resulting supernatant was discarded, and the pellet was double-filtered. This process was repeated twice to obtain the carrageenan and fucoidan extract. Titanium oxide nanoparticles (0.1 g) and Carbopol (50 g) were added to the obtained extract. The prepared product was stored in graded tubes at a cool temperature. The samples underwent degradation analysis, swelling test, contact angle analysis, and anti-inflammatory analysis.
Results: The degradation test, conducted on three samples on days 4, 7, and 14, respectively, resulted in complete degradation by day 6. The swelling index demonstrated a significant weight decrease from the first hour to the 24th hour, measuring 0.385 g and 0.330 g, respectively. The contact angles on the left and right sides were 54.07° and 55.2°, respectively, indicating their hydrophilic nature. Anti-inflammatory analysis at 50 μL revealed a standard value of 84 and a hydrogel value of 80.
Conclusion: The formulated hydrogel demonstrated complete degradation by day six, supporting its use in controlled drug delivery. The swelling index confirmed its moisture-retention capacity, while the hydrophilic contact angles highlighted its adhesion with periodontal tissues. The anti-inflammatory efficacy comparable to the standard demonstrated its potential as an effective therapeutic agent, making it a promising addition to nonsurgical periodontal treatment.

Keywords

Main Subjects


1. Rajeshwari HR, Dhamecha D, Jagwani S, Rao M, Jadhav K,
Shaikh S, et al. Local drug delivery systems in the management
of periodontitis: a scientific review. J Control Release.
2019;307:393-409. doi: 10.1016/j.jconrel.2019.06.038.
2. Bianchi A, Sanz V, Domínguez H, Torres MD. Valorisation of
the industrial hybrid carrageenan extraction wastes using ecofriendly
treatments. Food Hydrocoll. 2022;122:107070. doi:
10.1016/j.foodhyd.2021.107070.
3. Tuvikene R. Carrageenans. In: Phillips GO, Williams PA, eds.
Handbook of Hydrocolloids. 3rd ed. Woodhead Publishing;
2021. p. 767-804. doi: 10.1016/b978-0-12-820104-6.00006-1.
4. Udo T, Mummaleti G, Mohan A, Singh RK, Kong F. Current
and emerging applications of carrageenan in the food
industry. Food Res Int. 2023;173(Pt 2):113369. doi: 10.1016/j.
foodres.2023.113369.
5. Li L, Ni R, Shao Y, Mao S. Carrageenan and its applications
in drug delivery. Carbohydr Polym. 2014;103:1-11. doi:
10.1016/j.carbpol.2013.12.008.
6. Álvarez-Viñas M, Souto S, Flórez-Fernández N, Torres MD,
Bandín I, Domínguez H. Antiviral activity of carrageenans
and processing implications. Mar Drugs. 2021;19(8):437. doi:
10.3390/md19080437.
7. Singh P, Verma C, Gupta A, Mukhopadhyay S, Gupta B.
Development of κ-carrageenan-PEG/lecithin bioactive
hydrogel membranes for antibacterial adhesion and painless
detachment. Int J Biol Macromol. 2023;247:125789. doi:
10.1016/j.ijbiomac.2023.125789.
8. Jin JO, Chauhan PS, Arukha AP, Chavda V, Dubey A, Yadav D.
The therapeutic potential of the anticancer activity of fucoidan:
current advances and hurdles. Mar Drugs. 2021;19(5):265.
doi: 10.3390/md19050265.
9. Tsubura S, Waki Y, Tsubura T. Recurrent aphthous stomatitis
treated with fucoidan. Journal of Cranio-Maxillary Diseases.
2012;1(2):105. doi: 10.4103/2278-9588.105699.
10. Jun JY, Jung MJ, Jeong IH, Yamazaki K, Kawai Y, Kim
BM. Antimicrobial and antibiofilm activities of sulfated
polysaccharides from marine algae against dental plaque
bacteria. Mar Drugs. 2018;16(9):301. doi: 10.3390/
md16090301.
11. Lee WS, Park YS, Cho YK. Significantly enhanced antibacterial
activity of TiO2 nanofibers with hierarchical nanostructures
and controlled crystallinity. Analyst. 2015;140(2):616-22. doi:
10.1039/c4an01682c.
12. Yuan Z, Liu P, Hao Y, Ding Y, Cai K. Construction of Agincorporated
coating on Ti substrates for inhibited bacterial
growth and enhanced osteoblast response. Colloids
Surf B Biointerfaces. 2018;171:597-605. doi: 10.1016/j.
colsurfb.2018.07.064.
13. Mansoor A, Khan MT, Mehmood M, Khurshid Z, Ali MI,
Jamal A. Synthesis and characterization of titanium oxide
nanoparticles with a novel biogenic process for dental
application. Nanomaterials (Basel). 2022;12(7):1078. doi:
10.3390/nano12071078.
14. Bajpai SK, Sonkusley J. Hydrogels for oral drug delivery of
peptides: synthesis and characterization. J Appl Polym Sci.
2002;83(8):1717-29. doi: 10.1002/app.10097.
15. Hao Y, Zheng W, Sun Z, Zhang D, Sui K, Shen P, et al. Marine
polysaccharide-based composite hydrogels containing
fucoidan: preparation, physicochemical characterization,
and biocompatible evaluation. Int J Biol Macromol.
2021;183:1978-86. doi: 10.1016/j.ijbiomac.2021.05.190.
16. Aijaz MO, Haider S, Al-Mubaddel FS, Khan R, Haider A,
Alghyamah AA, et al. Thermal, swelling and stability kinetics of
chitosan based semi-interpenetrating network hydrogels. Fibers
Polym. 2017;18(4):611-8. doi: 10.1007/s12221-017-6921-5.
17. Risbud MV, Bhonde RR. Polyacrylamide-chitosan
hydrogels: in vitro biocompatibility and sustained
antibiotic release studies. Drug Deliv. 2000;7(2):69-75. doi:
10.1080/107175400266623.
18. Singh S, Prasad AS, Rajeshkumar S. Cytotoxicity, antimicrobial,
anti-inflammatory and antioxidant activity of Camellia sinensis
and citrus mediated copper oxide nanoparticle-an in vitro
study. J Int Soc Prev Community Dent. 2023;13(6):450-7. doi:
10.4103/jispcd.JISPCD_76_23.
19. Skoutakis VA, Carter CA, Mickle TR, Smith VH, Arkin CR,
Alissandratos J, et al. Review of diclofenac and evaluation
of its place in therapy as a nonsteroidal antiinflammatory
agent. Drug Intell Clin Pharm. 1988;22(11):850-9. doi:
10.1177/106002808802201102.
20. Sahin-Aydinyurt H, Cetin O, Aydogdu HM, Karaman E, Taskin
C, Sahin HG, et al. Evaluation of periodontal status and
interleukin levels in pregnant women with HELLP syndrome.
J Oral Health Oral Epidemiol. 2022;11(2):97-105. doi:
10.22122/johoe.2022.195326.1224.
21. Yeoh S, Taib H, Zainuddin SL, Ahmad B. Awareness about the
periodontal disease and diabetes mellitus interrelationship
among diabetic patients. J Oral Health Oral Epidemiol.
2021;10(2):93-9. doi: 10.22122/johoe.v10i2.1145.
22. Rizzo F, Kehr NS. Recent advances in injectable hydrogels
for controlled and local drug delivery. Adv Healthc Mater.
2021;10(1):e2001341. doi: 10.1002/adhm.202001341.
23. Sun Y, Yang B, Wu Y, Liu Y, Gu X, Zhang H, et al. Structural
characterization and antioxidant activities of κ-carrageenan
oligosaccharides degraded by different methods. Food Chem.
2015;178:311-8. doi: 10.1016/j.foodchem.2015.01.105.
24. Madruga LYC, Sabino RM, Santos EC, Popat KC, Balaban
RC, Kipper MJ. Carboxymethyl-kappa-carrageenan: a study
of biocompatibility, antioxidant and antibacterial activities.
Int J Biol Macromol. 2020;152:483-91. doi: 10.1016/j.
ijbiomac.2020.02.274.
25. Lee KY, Jeong MR, Choi SM, Na SS, Cha JD. Synergistic
effect of fucoidan with antibiotics against oral pathogenic
bacteria. Arch Oral Biol. 2013;58(5):482-92. doi: 10.1016/j.
archoralbio.2012.11.002.
26. Madruga LYC, Popat KC, Balaban RC, Kipper MJ.
Enhanced blood coagulation and antibacterial activities of
carboxymethyl-kappa-carrageenan-containing nanofibers.
Carbohydr Polym. 2021;273:118541. doi: 10.1016/j.
carbpol.2021.118541.
27. Egle K, Dohle E, Hoffmann V, Salma I, Al-Maawi S, Ghanaati
S, et al. Fucoidan/chitosan hydrogels as carrier for sustained
delivery of platelet-rich fibrin containing bioactive molecules.
Int J Biol Macromol. 2024;262(Pt 1):129651. doi: 10.1016/j.
ijbiomac.2024.129651.
28. Fontes-Candia C, Ström A, Lopez-Sanchez P, López-Rubio A,
Martínez-Sanz M. Rheological and structural characterization
of carrageenan emulsion gels. Algal Res. 2020;47:101873.
doi: 10.1016/j.algal.2020.101873.
29. Ahmad T, Eapen MS, Ishaq M, Park AY, Karpiniec SS,
Stringer DN, et al. Anti-inflammatory activity of fucoidan
extracts in vitro. Mar Drugs. 2021;19(12):702. doi: 10.3390/
md19120702.
30. Chandrakala V, Aruna V, Angajala G. Review on metal
nanoparticles as nanocarriers: current challenges and
perspectives in drug delivery systems. Emergent Mater.
2022;5(6):1593-615. doi: 10.1007/s42247-021-00335-x.
31. Thamarai Selvi VT, Chokkattu JJ, Neeharika S, Ramakrishnan M,
Shanmugam R. Green synthesis of titanium oxide nanoparticles
with rosemary and ginger and their bactericidal action against
Staphylococcus aureus. Cureus. 2023;15(9):e45892. doi:
10.7759/cureus.45892.
32. Arabsolghar M, Roshanzamir M, Lashkarizadeh M. Evaluation
of zinc as an adjunct in chlorhexidine containing toothpaste
on gingival and plaque index. J Oral Health Oral Epidemiol.
2017;6(3):115-20.
33. Fatemi K, Chavoshi A, Alidadiani A, Mokhtari M. Comparison
of curcumin topical nanogel and chlorhexidine mouthwash
for the treatment of chronic gingivitis: a randomized clinical
trial. J Oral Health Oral Epidemiol. 2022;11(1):13-8. doi:
10.22122/johoe.2021.192442.1136.